

Winchester City Council

Carfax Site, Winchester

Preliminary Geo-Environmental and

Geotechnical Assessment

This report has been prepared for **Winchester City Council** in accordance with the terms and conditions of appointment for the **Carfax site, Winchester**. Tweedie Evans Consulting Ltd cannot accept any responsibility for any use of or reliance on the contents by a third party.

Carfax Site, Winchester

Preliminary Geo-Environmental and Geotechnical Assessment

ISSUE RECO	ORD				
Report Refe	erence: 13080	15.001.01			
Version	Date	Amendments Record	Prepared by	Checked by	Authorised by
-	November		CHOOL	afflut	Deper
	2013		Claire Hooley	Alex Flint / Richard Evans	Ewan Tweedie
				- 8	

Tweedie Evans Consulting Limited The Old Chapel 35a Southover Wells Somerset BA5 1UH Tel: 01749 677760 Fax: 01749 679345 Email: info@tecon.co.uk

TABLE OF CONTENTS

1	Introduction.		
2	Site Descript	ion3	
3	Site History5		
4	Environment	al Setting8	
		-	
5	Outline Conc	eptual Model	
6	Intrusive Inv	estigation23	
7	Encountered	Ground Conditions26	
8	Contaminatio	on Characterisation	
9	Refined Conc	eptual Model41	
10	Ground Engir	neering	
11	Conclusions	& Recommendations54	
	Figures		
	Figure 1	Site Location Plan	
	Figure 2	Site Area Plan	
	Figure 3	Exploratory Hole Location Plan	
	Appendices		
	Appendix A	Site Photographs	
	Appendix B	Historical Maps	
	Appendix C	Envirocheck®	
	Appendix D	Regulatory Correspondence & Record Office Information	
		- Environmental Health – Winchester City Council - Site photograph (1954/55) - Garage Blueprints (1965/66)	
	Appendix E	Risk Evaluation	
	Appendix F	Exploratory Hole Logs	
		- TEC BH01 – BH03 - TEC WS01 – WS15 - TEC HDP1 – HDP3	
	Appendix G	Geochemical Certificates of Analysis	
		- i2 Analytical Report No. 13-47613 - i2 Analytical Report No. 13-47668 - i2 Analytical Report No. 13-48143	
	Appendix H	Soil Geotechnical Certificates of Analysis	
		- GEL Report No. 28647	
	Appendix I	Ground Gas Monitoring Results	

1 INTRODUCTION

1.1 Terms of Reference

1.1.1 Tweedie Evans Consulting Ltd (TEC) has been appointed by Winchester City Council to undertake a preliminary geo-environmental and geotechnical assessment of the Carfax site, Winchester. All works were undertaken in accordance with our proposal letter dated 06 September 2013 and referenced 1308015.001_006.bidlet.

1.2 Background

- 1.2.1 The site is bounded by three roads; Station Road along the northern and western boundary, Gladstone Street along the southern boundary and Sussex Street along the eastern boundary (Figure 1). The site covers an area of approximately 0.77Ha with the centre of the site located at National Grid Reference 447800, 129900. The nearest postcode is SO23 8TJ.
- 1.2.2 The site currently comprises an irregular shaped parcel of land, which can be divided into four sections (Figure 2). The site is primarily used for a range of car parks with associated soft landscaping whilst the County Council Register Office is present in the north-western corner of the site. Adjacent to the eastern boundary of the site is the County Council Records Office and further car parking to the south-west of the site.
- 1.2.3 Although full details of the proposed development have not been made available to TEC, it is understood the redevelopment is to comprise a mixed use site comprising a combination of office space, commercial properties, residential buildings, soft landscaped areas and car parking.
- 1.2.4 The aim of these works is to provide information regarding the characteristics of the sub-soils to support the redevelopment of the site and to provide the basis upon which abnormal costs associated with the development can be assessed.

1.3 Scope of Works

- 1.3.1 The scope of work undertaken as part of this report is presented below:
 - Preliminary Risk Assessment. This phase of assessment involves development of an initial site conceptual model, based on desk study research and a site reconnaissance survey, in order to establish whether or not there are potentially unacceptable risks.
 - Generic Quantitative Risk Assessment. This phase of assessment involves refinement of the site conceptual model developed as part of the Preliminary Risk Assessment based on the findings of an intrusive investigation. Generic assessment criteria and assumptions, if appropriate, are used to evaluate potentially unacceptable risks. Should unacceptable risks be identified, a feasible remediation options appraisal is provided and/or a Detailed Quantitative Risk Assessment is recommended. The purpose of the Detailed Quantitative Risk Assessment is to further refine the conceptual model and use more detailed site specific information and criteria to determine whether there are unacceptable risks.
 - Preliminary Geotechnical Assessment. General recommendations regarding likely engineering abnormals are provided on the basis of the findings of an intrusive investigation, together with preliminary foundation design recommendations for the proposed development.

- 1.3.2 The above scope of work has been undertaken in accordance with current guidance such as CLR 11 '*Model Procedures for the Management of Land Contamination*' (Environment Agency, 2004), BS10175:2011+A1:2013 and, where appropriate NHBC and Eurocode 7.
- 1.3.3 The report is presented in the following format.
 - Preliminary Risk Assessment: Section 2 – Site Description Section 3 – Site History Section 4 – Environmental Setting
 - Section 5 Outline Conceptual Model
 - Generic Quantitative Risk Assessment: Section 6 – Intrusive Investigation Section 7 – Encountered Ground Conditions Section 8 – Contamination Characterisation Section 9 – Refined Conceptual Model
 - Preliminary Geotechnical Assessment: Section 10 – Ground Engineering
 - Section 11 Conclusions and Recommendations

2 SITE DESCRIPTION

2.1 Site Location

2.1.1 The site is located within a predominantly commercial area and is bounded by the following features (Table 2.1):

Table 2.1:	Site Boundary Features
------------	------------------------

Direction from Site	Description
North	The northern boundary of the site is bounded by Station Road. Beyond this is car parking associated with the nearby railway station.
East	The eastern boundary of the site is bounded by Hampshire County Council Records Office. Beyond this is Sussex Street and a number of residential properties.
South	The southern boundary of the site is bounded by Gladstone Street. Beyond this are a number of residential properties.
West	The western boundary of the site is bounded by Station Road. Beyond this is Winchester railway station and associated sidings.

2.2 Land Use and Site Condition

2.2.1 A site reconnaissance survey was undertaken on 21st October 2013. A summary of the observations is presented below. Photographs taken during the site reconnaissance survey are presented in Appendix A.

Current Site Use

2.2.2 The site is currently occupied by a number of car parks associated with the adjacent Council buildings. These can be divided into three areas; within the northern section of the site is the Records Office car park, within the western section of the site is the Register Office car park and within the southern section of the site is Gladstone Street car park. The centre of the site is occupied by an area of soft landscaping comprising grass, flower beds and a number of semi-mature deciduous trees.

Site Topography

2.2.3 Available Ordnance Survey mapping indicates the site is generally situated at an approximate elevation of 54mAOD (Above Ordnance Datum) along the northern boundary of the site rising to 59mAOD within the western section of the site and 58mAOD in the southern section of the site, joined to the rest of the site via a series of steps. A slope is situated within the centre of the site rising from approximately 54mAOD along the eastern boundary of the site with the Records Office to approximately 56mAOD over an approximate distance of 10m.

Hard and Soft Landscaping

2.2.4 The western car park of the Register Office is laid entirely to tarmacadam hardstanding, which was observed to be in good condition. The northern car park associated with the Records Office comprises a dense granular material covered by a layer of decorative gravel. The centre of the site comprises a grass slope leading to a concrete pathway and an area of soft landscaping comprising shrubs and semi-

mature deciduous trees. The southern section of the site in the location of Gladstone car park is laid to gravel cover, with a number of potholes observed.

Fuel Storage

- 2.2.5 Although no fuel storage was observed on site during the walkover, a number of underground storage tanks (USTs) are suspected to be present within the northern section of the site, following information provided by Winchester City Council's Environmental Health Officer as well as documentary evidence obtained from searches at the HCC records office (Appendix D).
- 2.2.6 Ground Penetrating Radar (GPR) was utilised across the site to delineate the locations of suspected tanks prior to the intrusive investigation. Ground anomalies were reported along the northern boundary of the site within the Records Office car park, suspected to be associated with USTs for the former garage noted within this area.

Hazardous Chemicals and Waste Materials Storage

2.2.7 No evidence of hazardous chemical storage was observed on site. Notwithstanding this, waste material storage including recycling and waste bins were observed in a number of locations across the site.

Asbestos Containing Materials

2.2.8 No potential asbestos containing materials (ACM) was observed on site during the site reconnaissance. Notwithstanding this, given the potential age of onsite buildings and past developments being present on site, the potential for ACM cannot be discounted.

Site Drainage

2.2.9 A network of near surface storm water and foul water drains were observed across the site during the site reconnaissance. In addition, a manhole cover associated with a number of soakaways was observed in the southern Gladstone Street car park.

Evidence of Potential Contamination

2.2.10 No visual or olfactory evidence of contamination was noted on site during the site reconnaissance. Notwithstanding this, localised minor staining of the tarmacadam within both car parks was observed during the site reconnaissance.

<u>General</u>

2.2.11 A large power generator was observed along the eastern boundary of the site, associated with the adjacent records office. This was located at approximately the same elevation of the northern Records Office car park, although was observed to lead to further section, noted to be below that of the southern Gladstone Street car park in the south of the site.

2.3 Proposed Development

2.3.1 The full details of the proposed development have not been given to TEC. Notwithstanding this, it is understood the redevelopment of the site is to incorporate a combination of office space, further commercial properties, residential properties, soft landscaped areas and parking areas.

3 SITE HISTORY

3.1 Introduction

- 3.1.1 Details of the site history have been obtained through the review of historical Ordnance Survey (OS) mapping. The mapping reviewed is contained within Appendix B.
- 3.1.2 It is not the purpose of this section to provide a comprehensive account of development history, but only to detail those factors that are or could be relevant to the potentially contaminative history of the site and surrounds and the development of an outline site conceptual model.

3.2 Site History

3.2.1 The following represents a summary of potentially significant features recorded within the site area (Table 3.1).

Table 3.1: Site Features

Site Features	OS Dates
Earliest available mapping (1871) indicates the site was subjected to development within the southern section of the site (Gladstone Street car park) and the northern section of the site (Records Office car park).	1871
Gladstone Street car park comprises a number of residential properties with associated rear gardens located along the frontage of Gladstone Street, whilst the northern section of Gladstone Street car park contains part of Sussex Brewery.	
The Records Office car park in the northern section of the site contains a number of buildings and pathways.	
Additional development is shown within the northern section of the site within the Records Office car park (marked as a public house from 1932), with buildings extending into the Register Office car park in the eastern section of the site. Further development is noted in the centre of the site also. The brewery is no longer marked on mapping.	1897 - 1932
Residential housing in the southern Gladstone Street car park and the public house in the northwest corner of the site still recorded as present. In addition, a large engineering works is present from the northwest corner of the site where it continues through the centre of the site.	1953 - 1954
Residential properties are still located in Gladstone Street car park in the southern section of the site. In addition to the public house in the northwest corner house a second is present on the northwest corner of the site. The engineering works is recorded to decrease in size and now occupies the central section of the site only. A garage is shown to be present within the central section of the Records Office car park extending into the central section of the site. Development within the register office car park is no longer present on mapping.	1970 - 1971

Site Features	OS Dates
Residential properties along Gladstone Street in the southern section of the site are no longer present on mapping, as is the case with the public house in the northeast corner of the site.	1987
The garage and engineering works are no longer present on mapping. These have been replaced by a large car park, which continues through the centre of the site into the southern section of the site along Gladstone Street.	1991
The site is shown on mapping in its current formation, with the exception of the public house in the northwest corner of the site.	1993

3.3 Neighbouring History

3.3.1 The land uses within the immediate vicinity of the site have been considered. Based upon the reviewed map information the following potentially significant features have been identified (Table 3.2).

Surrounding Features	OS Dates	Distance	Direction
Reservoirs	1871 - 1971	~10m	West
Railway	1871 – 2013	~20m	West
Timber Yard	1871	~90m	West
Goods Yard	1871 – 1897 1952 - 1967	~90m	North-west
Gasometer Second Gasometer	1871 – 1966 1897 - 1910	~110m ~110m	North North
Union Workhouse Later, St Pauls Hospital	1871 – 1990 1932	~120m	South-west
Gas works	1871 - 1897	~130m	South-east
Brewery	1871 – 1954 1909	~200m ~170m	East North-east
Hospital	1898	~175m	South
Laundry; Later, Power Station	1898 1910	~250m	East
Engineering Works	1953 - 1971	~105m	East
Builders Yard	1953 – 1954	~170m	North-east
Electrical Sub Station	1953 – 1993 1974 1993 – 1994	~130m ~95m ~215m	South-east North-east South-east
Printing Works	1953 - 1971	~200m	South-east
Warehouse	1953 - 1975	~200m	North
Caravan Works; Later, Builders Yard	1953 1957 - 1967	~200m	North-west

Table 3.2: Surrounding Features

Surrounding Features	OS Dates	Distance	Direction
Gas Depot	1965 – 1975	~90m	North
Garage	1966 – 1975	~175m	North
	1974	~200m	South-east
	1984 – 1993	~195m	North-east
	1987	~95m	East
	1987	~105m	East

4 ENVIRONMENTAL SETTING

4.1 Information Sources

4.1.1 Environmental information for the site has been obtained through review of an Envirocheck[®] report for the site. This report provides extensive information, obtained from regulatory and commercial sources, regarding the environmental setting of the site. The Envirocheck[®] report has been included within Appendix C.

4.2 Geology and Hydrogeology

4.2.1 Published geological and hydrogeological information indicate the following geological sequence at the site:

Table 4.1: Geological and Hydrogeological Setting

Geological Unit	Thickness	Aquifer Status
Seaford Chalk Formation	50-80m	Principal Aquifer

<u>Geology</u>

- 4.2.2 The published geology for the site is shown on British Geological Survey (BGS) Sheet 299 (Winchester) Solid and Drift Edition as comprising the Seaford Chalk Formation, which is described by the BGS as generally firm white chalk with conspicuous semicontinuous nodular and tabular flint seams.
- 4.2.3 A number of historic borehole records are available from the BGS within proximity to the site. The closest available record is approximately 90m northeast of the site. A summary of the reported ground conditions are provided below:
 - **SU42NE171**: Tarmacadam hardstanding underlain by made ground comprising grey sand silty gravel of chalk, brick, coal and stone to a depth of 1.2mbgl. This in turn is recorded to be underlain by chalk, reported to becoming more competent with depth to the base of the excavation (10.0mbgl).
- 4.2.4 A second borehole record (SU42NE170) approximately 10m east of the first record reports similar ground conditions, with chalk reported to become more competent with depth to the base of the excavation (15.0mbgl).
- 4.2.5 The BGS estimated soil chemistry on site is reported within the Envirocheck[®] report as follows:
 - Arsenic <15mg/kg;
 - Cadmium <1.8mg/kg;
 - Chromium 90 120mg/kg;
 - Lead <150mg/kg; and
 - Nickel 15 30mg/kg
- 4.2.6 It is noted that these values are below current SSVs for commercial and residential site end uses.

Ground Gas Generation

4.2.7 In accordance with current guidance (Wilson, Card and Haines (2009)), the ground gas generation potential of the natural ground reported to underlie the site may be

classified as being very low with a negligible reported level of risk for on site development and a negligible reported risk of lateral migration.

- 4.2.8 Therefore, the natural ground anticipated to be encountered on site is not considered a potential significant source of ground gas generation. Notwithstanding this, made ground, if present, may provide a potential source of ground gas, subject to thickness and chemical composition.
- 4.2.9 The site is reported to be located within a lower probability radon area, as less than 1% of homes are reported to be above the Action Level. It is reported that no radon protection measures are necessary in the construction of new dwellings or extensions.

<u>Hydrogeology</u>

- 4.2.10 The Envirocheck[®] report for the site identifies the underlying geology (Seaford Chalk Formation) to be designated by the Environment Agency as a Principal Aquifer. The Environment Agency classifies a Principal Aquifer as follows:
 - **Principal Aquifer**: These are layers of rock or drift deposits that have high intergranular and/or fracture permeability meaning they usually provide a high level of water storage. They may support water supply and/or river base flow on a strategic scale. In most cases, principal aquifers are aquifers previously designated as major aquifer;
- 4.2.11 The underlying soils are reported as being of High Leaching Potential (i.e. soils which can possibly transmit a wide range of pollutants).
- 4.2.12 It is considered that any potential hydraulic gradient on site is likely to flow in a generally easterly direction towards the River Itchen and associated tributaries.
- 4.2.13 There are no reported groundwater abstraction licenses within 250m of the site.
- 4.2.14 The site is situated approximately 495m north-east of a source protection borehole. Consequently, the site is located approximately 85m north-east of a Zone I, Zone II and Zone III Source Protection Zone, understood to be associated with this groundwater source borehole. These Source Protection Zones are defined as follows:

Zone I (Inner Protection Zone): Defined as the 50 day travel time from any point below the water table to the source. This zone has a minimum radius of 50 metres.

Zone II (Outer Protection Zone): Defined by a 400 day travel time from a point below the water table. This zone has a minimum radius of 250 or 500 metres around the source, depending on the size of the abstraction.

Zone III (Source Catchment Protection Zone): Defined as the area around a source within which all groundwater recharge is presumed to be discharged at the source.

4.2.15 Based upon the above information the geological and hydrogeological setting of the site is considered to be of **Moderate to High Sensitivity**.

4.3 Hydrology

4.3.1 The closest surface water course to the site is a small stream by the name of Nuns Walk Stream located approximately 330m south-west of the site. The River Itchen is

located approximately 750m east of the site. The Environment Agency classifies the nearby surface water features as follows:

Table 4.2: Surface Water Features

Name	Quality	Distance	Direction
Nuns Walk Stream	River Quality A	~645m	East
River Itchen	River quality A	~820m	East

- 4.3.2 There are no reported surface water abstraction licenses in proximity to the site.
- 4.3.3 Licensed discharge consents to surface waters within 500m of the site are as follows:

Table 4.3: Licensed Discharge Consents

Receiving Water	Effluent Type	Distance	Direction
Not Supplied	blied Unknown discharge to land/soakaway		South-east
	Other matter surface water	~425m	North-east
Freshwater		~440m	North-east
Stream/River		~450m	North-east
		~490m	South-east

4.3.4 Pollution incidents to surface waters within 500m of the site are presented in Table 4.4.

Table 4.4: Pollution Incidents

Receiving Water	Pollution Incident	Distance	Direction
	Road Traffic Accident – Loss of 3 litres of petrol to drain 6 th November 1995 Category 3 (Minor) Incident	~340m	North
	Release of unknown oils into Brook as a result of poor operational practice 1 st August 1998 Category 3 (Minor) Incident	~350m	East
Not Given	Release of Inert Suspended Solids into stream through industrial practices 13 th august 1993 Category 3 (Minor) Incident	~370m	East
	Loss of 1500 litres of heating oil 22 nd October 1992	~460m	East
	Category 3 (Minor) Incident		

Receiving Water	Pollution Incident	Distance	Direction
	Release of Inert Suspended Solids into stream 17 th July 1995		East
	Category 3 (Minor) Incident		

- 4.3.5 The site is not reported to be located within an Environment Agency Flood Zone.
- 4.3.6 Given the above information, the hydrology of the site is considered to be of **Moderate Sensitivity**.

4.4 Environmental Data

4.4.1 Additional environmental data from the Envirocheck[®] report for the site is summarised in Table 4.5.

Table 4.5: Additional Environmental Data Summary

Category	0- 250m	250- 500m	Details		
Authorisations, Incidents and Registers					
Integrated Pollution Controls (IPC)	0	0	None Recorded		
Integrated Pollution Prevention and Control (IPPC)	0	0	None Recorded		
Local Authority Integrated Pollution Prevention and Control	0	0	None Recorded		
Local Authority Pollution Prevention and Controls	2	2	~60m north-east – PG6/46 Dry Cleaning; ~215m north – PG1/14 Petrol Filling Station		
Local Authority Pollution Prevention and Control Enforcements	0	0	None Recorded		
Prosecutions Relating to Authorised Processes and Controlled Waters	0	1	Guilty verdict delivered 10/12/01 – causing dirty water to enter a tributary of the River Itchen.		
Registered Radioactive Substances	0	0	None Recorded		
COMAH and NIHHS Sites	0	0	None recorded		
Planning Hazardous Substance Consents and Enforcements	0	0	None Recorded		
Enforcement and Prohibition Notices	0	0	None Recorded		

Category	0- 250m	250- 500m	Details
Substantiated Pollution Incident Register	0	0	None Recorded
Contaminated Land Register Entries and Notices	0	0	None Recorded
Waste Management			
Landfills and/or other waste management sites	0	0	None Recorded
Current Land Uses			
Potentially contaminative land uses	20	45	Including: ~55m north-west – MOT test centre; ~95m east – Car Dealers (inactive); ~165m north-west – Commercial cleaning services (inactive); ~195m north – Railways (inactive); ~230m north – Petrol Filling Station (inactive); ~230m east – Oil and gas exploration supplies; ~220m south – Chemicals – distribution and wholesalers; ~240m east – Printers; ~260m north-east – Scrap metal merchants (inactive); ~265m south – Commercial cleaning company
Petrol and fuel sites	2	0	~205m north-east – A H F Auto, now obsolete; and ~230m north – ESSO, status open.
Ecological Designated Areas			
Site of ecological value	1	0	The site is located within a Nitrate Vulnerable Zone.

4.5 Engineering Considerations

4.5.1 Engineering considerations identified from the Envirocheck[®] report for the site are summarised below:

Category	Yes/No	Details
Natural Hazards	Yes (very Low)	There is a very low reported hazard potential for collapsible ground and dissolution stability issues on site. There is no reported hazard potential with regards to compressible ground, landslide hazards, running sands and shrink/swell clays.
Mining Hazards	Yes	A number of man-made mining cavities are recorded in proximity to the site. These all relate to possible voids during piling operations within the chalk.

Table 4.6: Engineering Considerations

4.6 Regulatory Consultations

4.6.1 The following regulatory consultation has been undertaken with respect to possible environmental issues and ground conditions on-site and in the surrounding area (Appendix D).

Environmental Health– Winchester City Council

- 4.6.2 Environmental Health at Winchester City Council was contacted with regards to any potential contaminated land issues on site and within the surrounding area. The information provided is presented in Appendix D. A summary of the response is provided below.
- 4.6.3 It is understood that a number of potentially contaminative land uses have been present on site in the past. These include a petrol filling station (PFS) along the northern boundary of the site. The PFS is identified as Wykeham Motors and it is understood that there were four petroleum tanks associated with the PFS, with a total capacity of 8000 gallons. It has been reported that these were filled with concrete in 1977 but the potential for the tanks, associated infrastructure and residual contamination associated with such structures may still remain.
- 4.6.4 Further potentially contaminative processes include an engineering works c. 1953 1991 within the northern and central part of the site, as indicated on historical mapping and landmark entry, although the nature of these works are unknown.
- 4.6.5 Furthermore, a brewery was present on site c. 1871 although no further information regarding this feature is available.
- 4.6.6 In addition, a number of potentially contaminative land uses are reported in proximity to the site including, but not limited to, the railway, further PFS and several motor vehicle garages.
- 4.6.7 Finally, a contaminated land report undertaken by Structural Soils for the redevelopment of the adjacent Records Office has been logged as finding no evidence for contamination, although full details of this report were not available through WCC.

Building Control – Winchester City Council

4.6.8 Building Control was contacted with regards to any potential foundation and ground condition issues on site and within the surrounding area. A summary of the response is provided below.

- The ground conditions underlying the site are likely to be chalk, although a significant thickness of fill may be present associated with the presence of the nearby railway.
- Based on development undertaken in proximity to the site (Stockbridge Road) and the potential for a significant thickness of fill associated with the nearby railway, piling may be the most suitable option for foundation design within the proposed development.
- Following information provided within the Envirocheck report for the site regarding potential voids within the underlying chalk reported during piling operations on nearby sites, it is the opinion of Winchester City Council building control that this may be the case on the site also.

Petroleum Licensing Officer

- 4.6.9 Details regarding petroleum licensing information held by Hampshire County Council's Petroleum Service by emails dated 05 September 2013. A copy of this email and the included information is contained in Appendix D.
- 4.6.10 The information received indicates the historical presence of 4 No. 2000gallon USTs which were made safe by concrete infilling between May 1977 and December 1977. Although the historical contents of the tanks is not clear there is a suggestion that at least of them were utilised for the storage of petrol.
- 4.6.11 The tanks were recorded to be located to the north of the Wykeham Motors forecourt located off Station Road. No information was provided as to whether the four detailed USTs were subsequently removed.
- 4.6.12 In addition to the USTs the petroleum data also recorded a 600gallon paraffin above ground storage tank within the workshops to the rear.

4.7 Hampshire County Council Records

- 4.7.1 A review of records held at the Hampshire County Council Records Office was also undertaken. Copies of photographs and pre-construction blueprints obtained during these searches are provided in Appendix D.
- 4.7.2 Photographic evidence indicates that a garage, pre-existing Wykeham Motors, may have existed in the 1950's also in the northern area of the site. The photographs show that the garage, identified as Autoworks (Winchester) Ltd, utilised three fuels pumps with manholes in the forecourt suggesting that these may also have been supplied by USTs. The pumps and possible USTs would have been located to the east of those identified as being associated with Wykeham Motors.
- 4.7.3 Pre-construction blueprints for Wykeham Motors were reviewed. Dated 1965/66 the garage appeared to have been associated with an extensive workshop which is highlighted on mapping as being an engineering works. Blueprints for this structure indicated that it may have accommodated a range of uses such as vehicle spraying, repairs, small scale oil / lubricant storage, machine shop. In addition, an oil fired boiler with associated heating oil storage (~340litres) was shown as being present in the northern area of the site.
- 4.7.4 The ground floor for the Wykeham Motors establishment was detailed as being a 6" cast in situ reinforced concrete slab. In normal circumstances such a construction in good condition would be considered to provide significant protection from infiltration of spillages etc to ground.

4.8 Previous Site Report Summary

- 4.8.1 Geo-environmental and geotechnical information for the site has also been obtained through a review of the following report previously undertaken on part of the subject site (Gladstone Street car park) and the adjacent Hampshire County Council (HCC) Records Office. The report was provided by HCC and it is understood the information is in the public domain and can be utilised as part of this assessment. However, it should be noted that TEC can hold no liability with regards to the validity of this third part information.
 - Ground Investigation Report Winchester Cultural Centre, by White Young and Green Environmental. Prepared for Hampshire County Council. Report issued in March 2004, Ref: REPORT/E3696/JAV/NOV03/GIR/V2.
- 4.8.2 This report was received after the investigative works detailed in this report had been completed. However, the main findings of this report are summarised below.

Introduction

- 4.8.3 This investigation was undertaken to provide data/guidance for a proposed four storey building (HCC Records Office), constructed over a sub-basement car park. The site works reported were undertaken by Structural Soils and it is assumed that this is report previously referred to in correspondence with Winchester City Council Environmental Health.
- 4.8.4 The report reviewed related principally to investigative works undertaken in the Gladstone Street car park area although it is apparent that additional information had previously been gathered for the actual County Records Office.
- 4.8.5 Intrusive works were reportedly undertaken across the current Carfax site and adjacent land between 26 August and 2 September 2003 and comprised the advancement of 5No. cable percussive boreholes to a maximum depth of 15.65mbgl in order to assess ground conditions and enable foundation design for the proposed centre.

Ground Conditions

4.8.6 The general ground profile encountered at the site during the WYG Environmental ground investigation is summarised below.

Made Ground

- 4.8.7 Made ground was encountered in all boreholes and varied in thickness between 1.4mbgl and 7.3mbgl, although generally observed to depths between 1.4mbgl and 3.0mbgl. Made ground was reported to be variable in clayey sand with occasional chalk, brick and concrete fragments, silty sand, coarse angular limestone aggregate and chalk gravel.
- 4.8.8 The greater thickness of made ground encountered within one location (7.3mbgl -BH103) was reported as a varied mixture of materials including vegetable matter at various depths but did not include anthropogenic materials such as brick, concrete etc. It was considered by WYGE that this anomalous thickness of made ground may be associated with a backfilled excavation from former archaeological investigations undertaken at the site, although it was acknowledged that the feature may have been an indication of an infilled Chalk solution feature.

Natural Ground

- 4.8.9 White chalk was encountered in all boreholes and was described by WYGE as generally comprising Grade II to III (locally Grade IV in BH04), with grade generally improving with depth.
- 4.8.10 A number of discrete nodular flint bands were recorded within the chalk, in some instances chiselling was required to penetrate these flint bands.

Groundwater

4.8.11 No groundwater was reported to be encountered during the investigation.

Contamination Summary

- 4.8.12 No visual or olfactory evidence of contamination was reported within any of the investigation positions.
- 4.8.13 As a result of this, no laboratory testing was undertaken during the investigation.

Geotechnical Analysis

- 4.8.14 Geotechnical testing was undertaken on representative samples of the various encountered strata. Testing included moisture content, liquid and plastic limits, saturation moisture content of chalk, sulphate content and pH.
- 4.8.15 Classification testing undertaken on made ground materials encountered as both granular and cohesive reported soils of intermediate plasticity and low shrinkage potential where cohesive. pH and water soluble sulphate testing reported values of between 0.16g/l and 0.18g/l for sulphate and pH values of between 7.8 and 7.9.
- 4.8.16 Bulk densities of the chalk were reported to range between 1.72 and 1.84Mg/m³ averaging 1.76Mg/m³. Corresponding dry densities ranged between 1.35 and 1.52Mg/m³, averaging 1.41Mg/m³ and saturated moisture contents ranging between 28.79% and 36.8% averaging 33.98% were also determined. WYGE reported that the testing indicated the chalk to be of low density.
- 4.8.17 pH and water soluble sulphate tests were undertaken on five samples of the chalk. The results indicated water soluble sulphate concentrations of between 0.08g/l and 0.23g/l with pH values reported between 8.5 and 9.1. WYGE considered the Aggressive Chemical Environment for Concrete (ACEC) class to be AC-1 on the basis of the testing undertaken.

Engineering Considerations

- 4.8.18 WYGE reported that conventional foundations from the existing ground levels would not be practical due to the significant thickness of made ground recorded at the site (up to 7.3mbgl). However, it was recommended that, following removal of overburden materials during the construction of the below ground car park, it may be practical for conventional spread foundations constructed into the chalk for light and medium structural loadings. Alternatively, piled foundations would be required.
- 4.8.19 It was reported that, due to the variable thickness of made ground across the site, ground bearing floor slabs would undergo unacceptable total and differential settlements. Notwithstanding this, following the potential removal of made ground materials for the construction of the basement parking, the chalk may be exposed,

and following the introduction of a compacted granular fill, ground bearing floor slabs would be suitable for the building.

Previous HCC Site Investigation Data

- 4.8.20 The appendices of the WYGE report included a 'Report on the Site Investigations and Pile Foundation Design, Development of the Carfax Site, Winchester, Re. IA.1/2, dated October 1990. The report states that a site investigation was carried out at the Carfax car park site at the request of the County Architect, associated with a proposal to build an office block on the site.
- 4.8.21 The investigation was reported to have comprised three phases including 10no. trial pits, non-destructive radar survey and three boreholes.
- 4.8.22 The desk study section of the report recorded the site to be underlain by upper chalk. An archaeological excavation was reported to have been undertaken on part of the site that identified ancient refuse pits that extended 3m and deeper into the chalk. In addition, it was reported that development of the site indicated most of the site would comprise rubble to a depth of up to 2mbgl.
- 4.8.23 Ground conditions from the investigation works identified evidence of previous buildings including concrete floors, brick walls and rubble. A rubble filled cellar was reported within a concrete floor to a depth of 1.1mbgl and an ancient refuse pit was reported to 3.5mbgl comprising clay fill with items of archaeological interest.
- 4.8.24 Natural materials were reported to comprise partially weathered and unweathered hard chalk (reported to be Wakeling grades I, II, and III). Groundwater was reported in one borehole only at a depth of 16.2mbgl.
- 4.8.25 The radar survey identified walls and floors at depths up to 1m, a possible cellar and a suspected pit at a depth of approximately 2.0m. The cellar was noted to possibly continue beneath banking to the east.
- 4.8.26 It was reported that a piled foundation solution was selected on the basis of the ground conditions and consultation with HCC and it was recommended that pile lengths of 10m (for pile groups of three) and 8m (for pile groups of four) would be required.

4.9 General Summary

4.9.1 Given the above Environmental Setting and the general land use for the area, discussed in Section 2, this site is considered to be of Moderate to High Overall Environment Sensitivity.

5 OUTLINE CONCEPTUAL MODEL

5.1 Introduction

- 5.1.1 The assessment of potential risk associated with any identified contamination is based upon the identification and evaluation of Significant Pollutant Linkages.
- 5.1.2 A Significant Pollutant Linkage exists on a site only if three conditions are satisfied. These conditions are:
 - The presence of substances (potential contaminants / pollutants) that may cause harm (a **Source**)
 - The presence of a target which may be harmed e.g. site residents, groundwater (a **Receptor**)
 - A linkage between the Source and the Receptor e.g. ingestion of soil, inhalation of vapour (a **Pathway**)
- 5.1.3 In each case, the existence of a pollutant linkage requires that not only does both a Source and a Receptor have to exist but that a demonstrable Pathway also exists. Therefore, the presence of measurable concentrations of contaminants within the ground or groundwater environment does not automatically imply that a contamination problem exists on site.
- 5.1.4 The nature and importance of both pathways and receptors, which are relevant to a particular site, will vary according to the actual or intended use of the site, its characteristics and its surroundings.
- 5.1.5 This process of the identification of Pollutant Linkages has been applied below to assess the potential risks associated with the site.

5.2 Hazard Identification

5.2.1 Potentially contaminative current and historic processes have been identified on and within the vicinity of the site and are presented in Table 5.1.

Potential Hazard/Source	Location	Details
Made Ground	On site	The site has been subject to a number of phases of development since earliest available mapping. Previous phases of investigation undertaken on the site and adjacent land, by HCC and WYGE in 1990 and 2003 reported made ground across the site to depths generally between 1.4m and 3.0m, although a localised area of decayed organic matter was reported by WYGE to a depth of 7.3mbgl in the south-east of the site (possibly associated with an infilled solution feature or historical archaeological trenches). No geochemical laboratory analysis was reported to have been undertaken.
		Therefore, the presence of made ground of unknown thickness and composition cannot be discounted at this time. Any significant thickness of made ground may provide a potential source of ground gas, subject to nature and composition

Table 5.1: Identified Potential Hazards

Potential Hazard/Source	Location	Details
Potential contamination associated historical processes including a former garage with	On site	A garage and associated vehicle workshop (engineering works) is shown on available Ordnance Survey mapping from 1970-1971. In addition, information provided by Winchester City Council (WCC) suggests former fuel pumps and up to 4no. USTs, which may be present in the Records Office car park.
reported USTs and fuel pumps, a brewery and engineering works		GPR surveying undertaken within this area reported a ground anomaly approximately 25 square metres in size, which may be associated with USTs along the northern boundary of the site. The tanks are reported by WCC to have been concrete filled in 1977 although it is not known if the tanks and associated infrastructure were removed from site.
		Additional pumps and USTS may have located to the east of these.
		The potential for hydrocarbon contamination associated with the presence of these reported tanks and historical leakages and fuel spills cannot be discounted.
		The vehicle / engineering works may have been associated with a range of potentially contaminative uses including vehicle repairs and painting. Furthermore, an oil fired boiler and associated above ground heating oil storage may also have been present in the northern area of the site.
Potentially contaminative current and historic processes off site	Off site	Potentially contaminative processes have been identified in proximity to the site. These include a railway, gasholder stations, engineering works, garages and a hospital.

5.3 Potential Receptors and Pathways

- 5.3.1 Potential receptors identified as part of this preliminary risk assessment are:
 - Current/future site users;
 - Construction workers; and
 - Controlled waters (Principal Aquifer and surface waters)

5.3.2 Potential contaminant pathways relating to the identified receptors and contaminants of concern include:

- Dermal contact contact with soil, dust or water;
- Ingestion ingestion of soil, dust or water;
- Inhalation inhalation of soil, dust or vapours;
- Vertical migration e.g. seepage of contaminants at the ground surface (i.e. leakage/spillage of hydrocarbons) through cracks in hardstanding and/or leaching of contaminants within the unsaturated zone resulting in vertical contaminant migration; and
- Horizontal migration e.g. lateral migration of contaminants within the saturated zone and along preferential pathways such as drainage pipe bedding.

5.4 Hazard Assessment and Risk Estimation

5.4.1 Potential significant pollutant linkages identified as part of this preliminary risk assessment are summarised in the Outline Site Conceptual Model presented in Table 5.2. References to risk estimations are made in accordance with the methodology presented in CIRIA publication C552 (2001) titled *'Contaminated Land Risk Assessment: A Guide to Good Practice'* and summarised in Appendix E.

Potential Hazard/ Source	Potential Receptor	Potential Pathway to Receptors	Associated Hazard	Scale of Impact	Potential Consequence of Source- Receptor Linkage	Potential Likelihood for Significant Source- Receptor Linkage	Risk Classification
	Site end users and construction workers	Exposure to potential contaminants through ingestion, inhalation and dermal contact.	Risk of harm to human health	Local	Medium	Likely: Made ground has been recorded at the site, locally up to 7.3mbgl, although generally between 1.4m and 3.0mbgl. Therefore, made ground of unknown chemical composition is understood to be present at the site.	
Made Ground	Controlled waters	Infiltration of water through the unsaturated zone resulting in leaching of contaminants and potential vertical and horizontal migration along preferential pathways	Risk to Principal Aquifer	Local to regional	Medium to Severe	Likely: Given the reported presence of made ground material of unknown chemical composition, the reported presence of soils of high leaching potential and the aquifer status of the Seaford Chalk Formation (Principal Aquifer), a potential risk to controlled waters cannot be discounted.	Moderate Risk
	Site users and proposed development structures	Migration ingress and accumulation / inhalation of ground gasses	Risk to human health and damage to proposed structures	Local	Medium to Severe	Low Likelihood: Made ground may provide a potential source of ground gas, subject to thickness and composition. WYGE reported a significant thickness of organic material to be present in a localised area in the south-east of the site. However, general made ground was reported to be of limited thickness with no significant degradable material reported.	Moderate Risk
Potential contamination associated with historical processes including a former garage with reported USTs and fuel pumps, a brewery and engineering works	Site end users and construction workers	Exposure to contaminants through ingestion, vapour inhalation and dermal contact.	Risk of harm to human health	Local	Medium	Likely: A former brewery and engineering works have been reported on site. In addition, part of the site has historically been used as a garage, with information provided by WCC indicating historical USTs (reported to be concrete filled) and former fuel pumps. Therefore, the potential risk of contamination associated with the former brewery, engineering works and garage e.g. leaks and spills beneath former fuel pumps and around potential USTs and fuel lines cannot be discounted at this time.	

Table 5.2: Outline Conceptual Model (Hazard Assessment and Risk Estimation)

Potential Hazard/ Source	Potential Receptor	Potential Pathway to Receptors	Associated Hazard	Scale of Impact	Potential Consequence of Source- Receptor Linkage	Potential Likelihood for Significant Source- Receptor Linkage	Risk Classification
	Controlled waters	Vertical migration of hydrocarbon contamination through made ground and underlying natural strata and potential horizontal migration along preferential pathways.	Risk to controlled waters (Principal Aquifer and surface waters)	Local and regional	Medium	Likely: Owing to the reported historical garage with USTs and former fuel pumps and the former engineering works and brewery, the potential for contamination to be present cannot be discounted. The underlying Seaford Chalk Formation (Upper Chalk) is classified as a Principal Aquifer, with a potentially high permeability subject to fractures and fissures within the underlying materials. Therefore, the potential risk to controlled waters cannot be fully discounted at this time.	
Potentially Contaminative Current and Historic Processes – Off site	Future site users, construction worker and controlled waters	Potential on site contaminant/gas migration from on and off site sources	Risk to human health and controlled waters	Local	Medium	Low likelihood to Likely: Potentially contaminative current and historical processes have been identified in close proximity to the site including railway lines, gasholder stations, garages, engineering works and hospital. The Seaford Chalk Formation (Upper Chalk) is recorded to underlie the site area, which would be anticipated to have a high permeability. Therefore, the potential risk from on site migration of contaminants from off-site sources cannot be discounted at this stage.	Low to Moderate Risk

6 INTRUSIVE INVESTIGATION

6.1 Background

- 6.1.1 The ground investigation undertaken was designed to provide specific information regarding site conditions in support of the proposed site development.
- 6.1.2 In particular, the investigation was designed to provide further information on:
 - Ground conditions to aid with the design of the development; and
 - The potential significant pollutant linkages identified as part of the Preliminary Risk Assessment.
- 6.1.3 All site works were undertaken in accordance with BS5930:2010 (Amendment), BS10175:2011+A1:2013 and, where appropriate, Eurocode 7. Works were supervised by a suitably experienced geo-environmental consultant from TEC.

6.2 Methodology

- 6.2.1 Three cable percussive boreholes (BH01 BH03) were progressed to a maximum depth of 25.0mbgl using a Dando 2000 cable percussive rig to allow for the characterisation of ground materials, the collection of samples for laboratory geochemical and geotechnical analysis and for the installation of combined groundwater and ground gas monitoring wells.
- 6.2.2 Fifteen dynamic sample boreholes were progressed to a maximum depth of 5.0mbgl using an Archway Dart drilling rig at locations across the site (WS01 WS15). Five of the boreholes included the provision of a combined groundwater and ground gas monitoring installation screened within either the made ground or natural ground.
- 6.2.3 Three hand dug pits (HDP1 HDP3) were advanced to delineate the extent of potential USTs noted along the northern boundary of the site following a Ground Penetrating Radar (GPR) survey and to allow for the collection of near surface samples for geochemical testing.
- 6.2.4 Exploratory hole locations are presented in Figure 3 and the reasoning behind each investigation location is given in Table 6.1, as follows:

Location	Location Rationale
BH01 & WS01 – WS04 (Area 1)	 Classification and description of deposits underlying the site within the location of the historical garage and northern extent of former engineering works;
	 Soil screening and sampling of the near surface ground materials for geo-environmental and geotechnical testing;
	 Standard Penetration Testing to provide a strength profile of ground materials across the site; and
	 Installation of combined ground gas and groundwater monitoring wells (BH01).

 Table 6.1: Exploratory Hole Rationale

Location	Location Rationale
BH02 & WS05 – WS10 (Areas 2 – 3)	 Classification and description of deposits underlying the site within the location of the former engineering works; Soil screening and sampling of the near surface ground materials for geo-environmental and geotechnical testing; Standard Penetration Testing to provide a strength profile of ground materials across the site; and Installation of combined ground gas and groundwater monitoring wells (BH02, WS06 & WS10).
BH03 & WS11 – WS15 (Area 4)	 Classification and description of deposits underlying the site within the location of the former brewery/ southern site area; Soil screening and sampling of the near surface ground materials for geo-environmental and geotechnical testing; Standard Penetration Testing to provide a strength profile of ground materials across the site; and Installation of combined ground gas and groundwater monitoring wells (BH03, WS12 & WS13).
HDP1 to HDP3 (Area 1)	 Delineation of the extent of suspected USTs situated along the northern boundary of the site; and Classification and description of near surface deposits for geo-chemical and geotechnical analysis
DCP1 to DCP5	In-situ DCP testing to provide indicative CBR values for the underlying ground materials.

6.2.5 A detailed description of encountered ground conditions are shown on exploratory hole logs presented in Appendix F.

6.3 Field Testing

- 6.3.1 Standard Penetration Tests (SPTs) were undertaken at regular intervals within cable percussive and dynamic sample boreholes at depths of between 1.0mbgl and 24.5mbgl to gain an indicative strength profile of the underlying materials. The results of which are presented in Appendix F.
- 6.3.2 In situ testing using a dynamic cone penetrometer (DCP-TRL) was undertaken by TEC at a five locations across the site. The results are presented in Appendix J.
- 6.3.3 A MiniRAE Lite (10.6eV UV lamp) photo-ionisation detector (PID) was used on site to screen soil samples for the presence of total volatile organic compounds (VOCs) prior to laboratory testing. The corresponding results are presented on the exploratory hole logs in Appendix F.
- 6.3.4 Combined groundwater and gas monitoring wells were installed within the three cable percussive boreholes and five dynamic sample boreholes. Upon completion of the intrusive investigation, the groundwater level was taken using a dual phase interface probe dip meter and gas monitoring was undertaken at these locations using a calibrated GFM 430 gas analyser. The results of the gas monitoring are presented in Appendix I.

6.4 Chemical Testing

6.4.1 Laboratory testing was scheduled on the basis of field observations.

6.4.2 Representative soil and groundwater samples were collected and chemically tested at i2 Analytical Ltd, a UKAS/MCERTS accredited laboratory, for a selection of the following parameters:

Soils (Totals and Leachate)

- Asbestos screen;
- Total Organic Carbon (TOC);
- Heavy metals;
- Total Phenols (monohydric), Cyanide (total), Total Sulphate, Sulphide and pH;
- Speciated Polycyclic Aromatic Hydrocarbons (PAHs);
- Fractionated Total Petroleum Hydrocarbons;
- Volatile Organic Compounds (VOCs); and
- Semi-Volatile Organic Compounds (SVOCs).

Waters

- Heavy metals;
- Total Phenols (monohydric), Cyanide (total), Total Sulphate, Sulphide and pH;
- Speciated Polycyclic Aromatic Hydrocarbons (PAHs);
- Fractionated Total Petroleum Hydrocarbons;
- Volatile Organic Compounds (VOCs); and
- Semi-Volatile Organic Compounds (SVOCs).
- 6.4.3 Geochemical certificates of analysis are presented Appendix G.

6.5 Geotechnical Testing

- 6.5.1 Selected soil samples were submitted for geotechnical analysis at Geotechnical Engineering Ltd.
- 6.5.2 Laboratory testing was scheduled upon the basis of field observations for a selection of the following:
 - Moisture Content;
 - Liquid and Plastic Limits;
 - Saturated Moisture Content; and
 - pH and Sulphate
- 6.5.3 Soil geotechnical certificates of analysis are presented in Appendix H.

6.6 General Sampling

- 6.6.1 Soil samples were collected directly into pre-labelled sample containers. During the course of the sampling care was taken to minimise head space of the sample containers. Once filled sample containers were placed within cool boxes containing ice packs to maintain as cool a temperature as possible, nominally 4°C.
- 6.6.2 Samples were collected by courier for delivery to the selected laboratories. All samples were accompanied by detailed chain of custody sheets.

7 ENCOUNTERED GROUND CONDITIONS

7.1 Introduction

- 7.1.1 A summary of encountered ground conditions for the site is provided below.
- 7.1.2 Detailed descriptions of encountered ground conditions are shown on exploratory hole logs presented in Appendix F.

Made Ground

7.1.3 Made ground was observed to a maximum depth of 3.5mbgl (BH02), although previous site investigation undertaken in the south of the site by WYGE (2003) reported a maximum depth of 7.3mbgl. The made ground was generally observed to be variable across the four sections of the site. A summary of the encountered made ground materials encountered in each section of the site is summarised in Table 7.1 below.

Location	Encountered Material
Records Office Car Park (Area 1)	Encountered between 1.5mbgl (WS03) and 2.5mbgl (BH01) and recorded to generally comprise reddish brown to brown sandy gravel of flint, limestone and red brick underlain by light brown to white gravelly sandy silt or clay. The primary gravel components were recorded as chalk, flint and red brick. Cobbles and boulders of red brick were encountered across the site between depths of 1.1mbgl (WS01) and 1.8mbgl (BH01). WS02 and WS04 terminated on obstructions comprising red brick and concrete at depths of 1.25mbgl and 1.5mbgl, respectively.
Registry Office Car Park (Area 2)	Encountered to depths between 0.95mbgl (WS05) and 3.5mbgl (BH02) and generally reported to comprise tarmacadam hardstanding underlain by reddish brown slightly clayey sandy gravel of limestone, red brick and charcoal. In turn, recorded to be underlain by brown locally dark brown and yellowish brown sandy gravel of limestone, tarmacadam, flint, red brick and charcoal underlain by brown locally white slightly sandy gravelly silty clay to the base of the made ground within WS05 and white gravelly clay with gravel of chalk and red brick within WS06.

Table 7.1: Encountered Made Ground Materials

Location	Encountered Material
Central Section (Area 3)	Encountered to depths of 0.1mbgl (WS10) and 0.3mbgl (WS07) and generally reported to comprise dark brown to light brown gravelly sandy silt or clay with the primary gravel component reported as flint, red brick, chalk and rare glass. Deeper made ground was encountered within one location (WS08), to a depth of 0.9mgl. The made ground was encountered as light brown speckled white and locally yellowish brown slightly sandy slightly clayey gravelly silt. The gravel component within this material was recorded as red brick, chalk, concrete, charcoal and flint. The dynamic sample hole was recorded to terminate on concrete at a depth of 0.9mbgl.
Gladstone Street Car Park (Area 4 - southern site area)	Encountered to depths between 1.1mbgl (WS14) and 3.0mbgl (BH03) and generally recorded to comprise reddish brown to black gravel of limestone, flint and occasional red brick underlain by dark brown locally white slightly clayey sandy gravel of chalk, red brick flint and concrete. This in turn was observed to be underlain by white locally brown, reddish brown or light brown clayey gravel of chalk, red brick, flint and concrete.

Natural Ground

7.1.4 The natural ground was encountered from depths between 0.1mbgl (WS08) and 3.5mbgl (BH02) to a maximum proven depth of 25.0mbgl (BH01). The upper natural materials observed comprised structureless chalk (CIRIA Grade Dm/Dc?) generally recorded as being clayey silt and clayey gravel to a maximum depth of 4.5mbgl (BH02). This in turn was recorded to be underlain by very weak to weak, low to medium density chalk becoming weak to moderately weak, medium to high density chalk with depth. Hard bands of flint were reported at various depths across the site. A CIRIA grade could not be attributed to the encountered chalk as a result of the drilling technique used to advance the boreholes.

7.2 UST Investigation

- 7.2.1 Following information provided by Winchester City Council and available historical mapping it was understood that a number of underground storage tanks (USTs) were likely to be present along the northern boundary of the site associated with the former onsite garage.
- 7.2.2 Ground penetrating radar (GPR) survey was undertaken to determine the extent of these potential tanks. A ground anomaly approximately 25 square metres was recorded along the boundary with Station Road.
- 7.2.3 Two hand dug pits were advanced along the edge of this anomaly to allow for the collection of soil samples for laboratory analysis to determine whether or not they have been impacted by hydrocarbon contamination associated with this feature.
- 7.2.4 A third hand dug pit was advanced over the potential USTs to determine the depth at which they are situated. The pit was terminated at a depth of 0.74mbgl on a solid material, considered to be potentially the top of an UST.

7.2.5 No visual or olfactory evidence of gross hydrocarbon contamination was noted within the hand dug pits in association with the potential USTs.

7.3 Groundwater and Perched Water

7.3.1 Water strikes encountered during the site works are shown on the exploratory hole logs in Appendix F and summarised in Table 7.2 below.

Table 7.2: Groundwater Strikes

Location	Date	Groundwater Strike (mbgl)	Strata
BH01	22/10/2013	19.6mbgl	Chalk

- 7.3.2 Groundwater was encountered within one location (BH01) at depth during the drilling process within the moderately weak, high density chalk deposits.
- 7.3.3 Following completion of the site works, groundwater levels were gauged as part of the ground gas monitoring. The results of the monitoring are presented in Appendix I and Table 7.3.

Location	Date	Groundwater Levels (mbgl)	Strata	
BH01	25/10/2013	18.53		
	13/11/2013	18.28	Natural	
	27/11/2013	18.41		
DUOO	25/10/2013		Natural	
BH02	13/11/2013	Dry		
	27/11/2013			
ВНОЗ	25/10/2013		Natural	
	13/11/2013	Dry		
	27/11/2013			
WS03	25/10/2013		Natural	
	13/11/2013	Dry		
	27/11/2013			
WS06	25/10/2013		Made Ground	
	13/11/2013	Dry		
	27/11/2013			
WS10	25/10/2013		Natural	
	13/11/2013	Dry		
	27/11/2013			
WS11	25/10/2013		Natural	
	13/11/2013	Dry		
	27/11/2013			
WS13	25/10/2013		Natural	
	13/11/2013	Dry		
	27/11/2013			

Table 7.3: Groundwater Levels

7.4 Contamination Summary

7.4.1 During the intrusive investigation, no visual or olfactory evidence of significant hydrocarbon contamination was observed.

- 7.4.2 The GPR survey identified an area of buried structures, considered likely to be associated with underground fuel storage tanks along the northern boundary of the site, which is likely to be associated with the former garage situated within this area of the site.
- 7.4.3 Notwithstanding this, no elevated total Volatile Organic Compounds (VOCs) were recorded within sampled made ground material using a photo-ionisation detector (PID). All concentrations were recorded at 0.0ppm (i.e. below the limit of detection for the instrument).
- 7.4.4 During the ground gas monitoring, the groundwater level was taken using a Dual Phase Interface Meter, which did not record the presence of any free phase hydrocarbons (NAPL).
- 7.4.5 No evidence of vertical migration of contamination was observed within BH01 advanced in the northern area of the site.

8 CONTAMINATION CHARACTERISATION

8.1 Legislation

- 8.1.1 Contaminated Land is defined in Part IIA of the Environmental Protection Act (1990) as:
- 8.1.2 "Any land which appears to the Local Authority in whose area it is situated to be in such a condition, by reasons of substances in, on or under the land that:
 - Significant harm is being caused or there is a significant possibility of such harm being caused;

or

 *significant pollution of controlled waters is being caused or there is a significant possibility of such pollution being caused."

*Section 86 of the Water Act 2003 amends section 78A of Environmental Protection Act 1990 for Controlled Waters.

8.2 Generic Quantitative Risk Assessment

Human Health Screening

8.2.1 Current legislation and guidance on the assessment of contaminated land promotes a tiered risk approach (CLR 11). The generic quantitative risk assessment comprises a screening of identified contaminants against generic guideline values that are appropriate to the site setting and the receptors concerned. For risks to human health the basis for these generic guideline values are the methodologies set out by the Environment Agency's Contaminated Land Exposure Assessment (CLEA) guidelines.

Soil Guideline Values

8.2.2 Following release of DEFRA's *Outcome of the "Way Forward" exercise on Soil Guideline Values,* the Environment Agency has recently made significant changes to the CLEA package of software and guidance which resulted in formerly published Soil Guideline Values (SGVs) being withdrawn (August 2008). However, the Environment Agency has an on-going programme of publication of revised SGVs with a number already having been issued with further potential contaminants being reported as nearing publication. Where such revised SGVs have been published these have been utilised as part of the GQRA.

Generic Assessment Criteria

- 8.2.3 In the absence of published SGVs the GQRA has been undertaken by comparison of recorded values against GACs published by the Chartered Institute of Environmental Health and Land Quality Management (CIEH/LQM 2009) and CL:AIRE/ EIC/ AGS (2009), both of which have been derived using the CLEA model v1.04.
- 8.2.4 It is understood that the site is proposed to be redeveloped for mainly commercial use and therefore the standard land use for the site, for use in the generic assessment, has been defined as "commercial". Notwithstanding this, an initial comparison of the analytical results with "residential" screening criteria has also been undertaken should any residential use be proposed for the site.

Lead

8.2.5 The updated CLEA software cannot currently be used to derive Soil Guidance Values for lead as current regulatory guidance and commonly accepted good practice for the derivation of such a value is based upon predicted blood lead levels as opposed a threshold or "tolerable" intake values. To maintain consistency with the methodology previously detailed in SGV10, which also reviewed and discounted the IEUBK model for the generation of a GAC, we have derived an interim Generic Assessment Criteria (GAC) for lead using the SEGH model. Details regarding the derivation of this SSV can be provided on request however, based upon a blood lead level Health Criteria Value of 5µg/dl a SSV of 500mg/kg has been derived for a commercial / industrial end use.

Cyanide

8.2.6 In the absence of a published SGV or GAC for cyanide the GQRA for total cyanide is based upon comparison of recorded values against the Dutch Intervention Value for free cyanide (VROM 2000).

Total Petroleum Hydrocarbons

8.2.7 The Environment Agency document titled '*The UK Approach for Evaluating Human Health Risks from Petroleum Hydrocarbons in Soils*' (2005) describes the framework for the assessment of petroleum hydrocarbons in the UK. The approach adopted is similar to that detailed by the Total Petroleum Hydrocarbon Criteria Working Group (TPHCWG) with assessment of both carcinogenic indicator compounds (e.g. benzene) and the combined threshold effects of various hydrocarbon fractions. TEC have adopted this approach for generic risk assessment purposes with the GAC for the various fractions being derived from current recognised guidance (LQM/CIEH (2009)).

Controlled Waters Screening

- 8.2.8 Risks to controlled waters have been assessed following current Environment Agency guidance such as "*Remedial Targets Methodology Hydrogeological Risk Assessment for Land Contamination*". This guidance describes a tiered approach to the assessment and, if necessary, derivation of clean up targets for soils and groundwater with the emphasis on the protection of controlled waters.
- 8.2.9 In accordance with Environment Agency guidance, a Level 1 soil (leachability) and Level 2 groundwater generic screening assessment has been undertaken, based on the findings of the sampling undertaken as part of this phase of works, to identify the contaminants of concern that may pose a risk to controlled waters. This assessment has been undertaken by the comparison of soil leachate and groundwater contaminant concentrations with criteria applicable to the long term protection of water quality.
- 8.2.10 Based on our conceptual understanding, the nearest significant controlled water receptor is considered to be the underlying Principal Aquifer. Therefore, analytical results have been assessed against River Basin Districts Typology, Standards and Groundwater Threshold Values (Water Framework Directive) (England and Wales) Direction 2010, where available. Where such standards are not available, analytical results have been assessed against The Water Supply (Water Quality) Regulations 2010.

Ground Gas Screening

- 8.2.11 An initial qualitative risk screening assessment based upon the methodology for characterising gassing sites detailed within the following documents has been undertaken:
 - CIRIA Report C665 (2007) 'Assessing risks posed by hazardous ground gases to buildings (revised)';
 - NHBC (March 2007) 'Guidance on evaluation of development proposals on sites where methane and carbon dioxide are present';
 - BS8485:2007 'Code of Practice for the characterisation and remediation from ground gas in affected developments';
 - BS8576:2013 'Guidance on investigations for ground gas Permanent gases and Volatile Organic Compounds (VOCs)'; and
 - Wilson S., Card C. and Haines S. (2009) 'Ground Gas Handbook'.
- 8.2.12 The objectives of the screening assessment are to provide a general characterisation of the ground materials within the site based on the investigation works undertaken to-date. This information is used to provide a preliminary assessment of gassing potential for the materials encountered at the site. This, together with ground gas data collected as part of the monitoring undertaken to date, is used to provide a qualitative conceptual model of identified risk in relation to the proposed development.

8.3 Soil Analysis - Human Health

- 8.3.1 Soil samples were collected and analysed from both made ground and natural soils. Certificates of analysis for samples are contained within Appendix G.
- 8.3.2 Current regulatory guidance for the statistical assessment of environmental data within a contaminated land context is detailed within the CIEH and CL:AIRE joint publication titled '*Guidance on Comparing Soil Concentration Data with a Critical Concentration*' (2008). However, as judgemental sampling has been undertaken, statistical assessment as detailed in CL:AIRE (2008) has not been carried out as part of this assessment. Therefore, to identify Contaminants of Potential Concern (COPC) as part of this preliminary assessment, the analytical results for the ground materials sampled have been assessed by the screening of individual analyses against the relevant Tier 1 Site Screening Values (SSVs) adopted.
- 8.3.3 For generic assessment purposes, SSVs have been conservatively selected, where appropriate, based upon a sandy soil and Soil Organic Matter (SOM) of 1%.

Made Ground

8.3.4 13No. samples of made ground were scheduled for analysis from the site. The results obtained from made ground are summarised in Table 8.1 below:

Table 8.1: Soil Analysis Summary

	Мах	Min	SSV ¹	No. of	No. of
Contaminant	(mg/kg)	(mg/kg)	(mg/kg)	Tests	Exceedances
Arsenic	21	2.2	640	13	0
Boron	1.4	<0.2	192000 ⁽¹⁾	13	0
Cadmium	2.6	<0.2	230	13	0
Chromium (III)	31	3.7	30400 ^(2,6)	13	0
Chromium (VI)	<4.0	<4.0	-	6	0
Copper	73	6.5	71700 ⁽¹⁾	13	0
Lead	760	13	500 ⁽⁴⁾	13	1
Mercury	1.2	<0.3	3600	13	0
Nickel	29	4.8	1800	13	0
Selenium	<1.0	<1.0	13000	13	0
Zinc	350	27	66500 ⁽¹⁾	13	0
Beryllium	1.8	0.2	51 ⁽¹⁾	13	0
Vanadium	36	6.5	3160 ⁽¹⁾	13	0
Barium	350	19	1300 ⁽⁸⁾	13	0
Antimony	1.3	<1.0	-	6	0
Cobalt	4.1	1.6	-	6	0
Iron	13000	5100	-	6	0
Manganese	460	190	-	6	0
Molybdenum	0.4	<0.3	_	6	0
Phosphorus	470	240	_	6	0
Tin	3.6	<1.0	_	6	0
Cyanide (Total)	<1	<1	20 ⁽³⁾	13	0
Total Phenol (Monohydric)	<2.0	<2.0	3200	13	0
Water Soluble Sulphate (SO ₄) - g/l	0.18	0.0077	-	13	0
Ammonium as NH ₄	7.1	<5.0	-	6	0
Calcium	430000	79000	-	6	0
Magnesium	21000	3000	-	6	0
Potassium	910	460	-	6	0
Sodium	200	110	_	6	0
Ηα	9.8	7.9	_	13	0
Naphthalene	< 0.05	< 0.05	200 ⁽¹⁾	13	0
Acenaphthylene	<0.20	<0.20	84000 ⁽¹⁾	13	0
Acenaphthene	<0.10	<0.10	85000 ⁽¹⁾	13	0
Fluorene	<0.20	<0.20	64000 ⁽¹⁾	13	0
Phenanthrene	1.7	<0.20	200 ⁽¹⁾	13	0
Anthracene	0.34	<0.10	530000 ⁽¹⁾	13	0
Fluoranthene	3.0	<0.20	23000 ⁽¹⁾	13	0
Pyrene	2.5	<0.20	54000 ⁽¹⁾	13	0
Benzo(a)anthracene	1.3	<0.20	90 ⁽¹⁾	13	0
Chrysene	1.4	<0.05	140 ⁽¹⁾	13	0
Benzo(b)fluoranthene	2.1	<0.10	100 ⁽¹⁾	13	0
Benzo(k)fluoranthene	0.9	<0.20	140 ⁽¹⁾	13	0
Benzo(a)pyrene	1.3	<0.10	140 ⁽¹⁾	13	0
Indeno(1,2,3-cd)pyrene	0.44	<0.20	60 ⁽¹⁾	13	0
Dibenz(a,h)anthracene	<0.20	<0.20	13 ⁽¹⁾	13	0
Benzo(g,h,i)perylene	0.55	< 0.05	650	13	0
Total PAH	<2.0	<2.0	000	13	0

Contaminant	Max (mg/kg)	Min (mg/kg)	SSV ¹ (mg/kg)	No. of Tests	No. of Exceedances
Benzene	<1.0	<1.0	95	13	0
Toluene	<1.0	<1.0	4400	13	0
Ethylbenzene	<1.0	<1.0	2800	13	0
p & m-xylene	<1.0	<1.0	3200 ⁽⁵⁾	13	0
o-xylene	<1.0	<1.0	2600	13	0
MTBE	<1.0	<1.0	-	13	0
TPH Aliphatic C5-C6	<0.1	<0.1	3400 ⁽¹⁾	13	0
TPH Aliphatic C6-C8	<0.1	<0.1	8300 ⁽¹⁾	13	0
TPH Aliphatic C8-C10	<0.1	<0.1	2100 ⁽¹⁾	13	0
TPH Aliphatic C10-C12	<1.0	<1.0	10000 ⁽¹⁾	13	0
TPH Aliphatic C12-C16	<2.0	<2.0	61000 ⁽¹⁾	13	0
TPH Aliphatic C16-C21	<8.0	<8.0	1 (0 0 0 0 0 (1)	13	0
TPH Aliphatic C21-C35	52	<8.0	1600000 ⁽¹⁾	13	0
TPH Aromatic C5-C7	<0.1	<0.1	28000 ⁽¹⁾	13	0
TPH Aromatic C7-C8	<0.1	<0.1	59000 ⁽¹⁾	13	0
TPH Aromatic C8-C10	<0.1	<0.1	3700 ⁽¹⁾	13	0
TPH Aromatic C10-C12	<1.0	<1.0	17000 ⁽¹⁾	13	0
TPH Aromatic C12-C16	<2.0	<2.0	36000 ⁽¹⁾	13	0
TPH Aromatic C16-C21	13	<10	28000 ⁽¹⁾	13	0
TPH Aromatic C21-C35	180	<10	28000 ⁽¹⁾	13	0
TPH (C6-C10)	<0.1	<0.1	-	6	0
TPH (C10-C40)	280	<10	-	6	0
Mineral Oil (C10-C40)	52	<10	-	6	0

SSV based on "Commercial" end use 1

2 LQM/CIEH Generic Assessment Criteria (2009)

Dutch Intervention Value for free cyanide (VROM 2000) 3

4 TEC derived interim GAC for "Commercial" end use

5 SSV based on p-xylene "Commercial" SGV

SSV based on Chromium III GAC 6

Reported as Laboratory Limit of Detection (LOD) 7 8

CL: AIRE, AGS & EIS based on "Commercial" (2009)

- 8.3.5 A single exceedance was reported for the site for lead at WS06 at 0.25-0.35mbgl (760mg/kg) with regards to a Tier 1 SSV for a commercial site end use. No further exceedances of the Tier 1 SSV for inorganic or organics contaminants were recorded within the sampled made ground materials when considering a commercial site end use.
- 8.3.6 Notwithstanding this, marginal exceedances of Tier 1 SSVs of benzo(a)pyrene were reported in three locations across the site when considering a residential site end use. These are as follows:
 - WS06 at 0.25-0.35mbgl (1.2mg/kg);
 - WS08 at 0.1-0.2mbgl (1.1mg/kg); and
 - WS11 at 1.2-1.3mbgl (1.3mg/kg) •
- 8.3.7 Laboratory analysis of this material did not record the presence of volatile or semivolatile organic compounds (VOCs and SVOCs) with all concentrations recorded below the laboratory limit of detect.

Natural Strata

8.3.8 7No. samples of the natural ground were scheduled for chemical testing. A summary of the analytical results are presented in Table 8.2:

Table 8.2:	Soil Analysis	Summary –Natural Strata
------------	---------------	-------------------------

Contaminant	Max (mg/kg)	Min (mg/kg)	SSV ¹ (mg/kg)	No. of Tests	No. of Exceedances
Arsenic	<1.0	<1.0	640	2	0
Boron	<0.2	<0.2	192000 ⁽¹⁾	2	0
Cadmium	0.2	<0.2	230	2	0
Chromium	1.2	1.0	30400 ^(2,6)	2	0
Copper	3.8	3.7	71700 ⁽¹⁾	2	0
Lead	<2.0	<2.0	500 ⁽⁴⁾	2	0
Mercury	<0.3	< 0.3	3600	2	0
Nickel	2.3	<2.0	1800	2	0
Selenium	<1.0	<1.0	13000	2	0
Zinc	70	13	66500 ⁽¹⁾	2	0
Beryllium	<0.1	<0.1	51 ⁽¹⁾	2	0
Vanadium	2.5	2.1	3160 ⁽¹⁾	2	0
Barium	9.1	8.9	1300 ⁽⁸⁾	2	0
Cyanide (Total)	<1	<1	20 ⁽³⁾	2	0
Total Phenol (Monohydric)	<2.0	<2.0	3200	2	0
Water Soluble Sulphate (SO ₄) – g/l	0.13	0.0077	-	2	0
рН	8.2	7.9	-	2	0
Naphthalene	< 0.05	<0.05	200 ⁽¹⁾	7	0
Acenaphthylene	<0.20	<0.20	84000 ⁽¹⁾	7	0
Acenaphthene	<0.10	<0.10	85000 ⁽¹⁾	7	0
Fluorene	<0.20	<0.20	64000 ⁽¹⁾	7	0
Phenanthrene	<0.20	<0.20	200 ⁽¹⁾	7	0
Anthracene	<0.10	<0.10	530000 ⁽¹⁾	7	0
Fluoranthene	<0.20	<0.20	23000 ⁽¹⁾	7	0
Pyrene	<0.20	<0.20	54000 ⁽¹⁾	7	0
Benzo(a)anthracene	<0.20	<0.20	90 ⁽¹⁾	7	0
Chrysene	< 0.05	< 0.05	140 ⁽¹⁾	7	0
Benzo(b)fluoranthene	<0.10	<0.10	100 ⁽¹⁾	7	0
Benzo(k)fluoranthene	<0.20	<0.20	140 ⁽¹⁾	7	0
Benzo(a)pyrene	<0.10	<0.10	14 ⁽¹⁾	7	0
Indeno(1,2,3-cd)pyrene	<0.20	<0.20	60 ⁽¹⁾	7	0
Dibenz(a,h)anthracene	<0.20	<0.20	13 ⁽¹⁾	7	0
Benzo(g,h,i)perylene	< 0.05	< 0.05	650	7	0
Benzene	<1.0	<1.0	95	7	0
Toluene	<1.0	<1.0	4400	7	0
Ethylbenzene	<1.0	<1.0	2800	7	0
p & m-xylene	<1.0	<1.0	3200 ⁽⁵⁾	7	0
o-xylene	<1.0	<1.0	2600	7	0
MTBE	<1.0	<1.0		7	0
TPH Aliphatic C5-C6	<0.1	<0.1	3400 ⁽¹⁾	7	0
TPH Aliphatic C6-C8	<0.1	<0.1	8300 ⁽¹⁾	7	0
TPH Aliphatic C8-C10	<0.1	<0.1	2100 ⁽¹⁾	7	0
TPH Aliphatic C10-C12	<1.0	<1.0	10000 ⁽¹⁾	7	0

Contaminant	Max (mg/kg)	Min (mg/kg)	SSV ¹ (mg/kg)	No. of Tests	No. of Exceedances
TPH Aliphatic C12-C16	<2.0	<2.0	61000 ⁽¹⁾	7	0
TPH Aliphatic C16-C21	<8.0	<8.0	1600000 ⁽¹⁾	7	0
TPH Aliphatic C21-C35	<8.0	<8.0	1600000	7	0
TPH Aromatic C5-C7	<0.1	<0.1	28000 ⁽¹⁾	7	0
TPH Aromatic C7-C8	<0.1	<0.1	59000 ⁽¹⁾	7	0
TPH Aromatic C8-C10	<0.1	<0.1	3700 ⁽¹⁾	7	0
TPH Aromatic C10-C12	<1.0	<1.0	17000 ⁽¹⁾	7	0
TPH Aromatic C12-C16	<2.0	<2.0	36000 ⁽¹⁾	7	0
TPH Aromatic C16-C21	<10	<10	28000 ⁽¹⁾	7	0
TPH Aromatic C21-C35	<10	<10	28000 ⁽¹⁾	7	0

- 1 SSV based on "Commercial" end use
- 2 LQM/CIEH Generic Assessment Criteria (2009)
- 3 Dutch Intervention Value for free cyanide (VROM 2000)
- 4 TEC derived interim GAC for "*Commercial*" end use
- 5 SSV based on p-xylene "Commercial" SGV
- 6 SSV based on Chromium III GAC
- 7 Reported as Laboratory Limit of Detection (LOD)
- 8 CL: AIRE, AGS & EIS based on "*Commercial*" (2009)
- 8.3.9 No exceedances of the Tier 1 SSV for inorganic or organics contaminants were recorded within the sampled made ground materials when considering a commercial site end use.
- 8.3.10 In addition, no exceedances of Tier 1 SSV are noted when considering a residential site end use.
- 8.3.11 Furthermore, all analysed samples recorded concentrations of PAH and TPH to be below the laboratory limit of detection.

8.4 Soil Analysis - Controlled Waters (Leachability)

8.4.1 4No. samples obtained from the made ground were scheduled for leachability analysis. The certificate of analysis is shown in Appendix G with a comparison of results with Tier 1 SSVs shown below in Table 8.3.

Table 8.3: Made Ground Leachability Analysis

Contaminant	Max (µg/l)	Min (µg/l)	SSV (µg/l)¹	No. of Tests	No. of Exceedances
Arsenic	13	4.3	199	4	0
Boron	27	< 10 ⁽³⁾	750	4	0
Cadmium	< 0.08 ⁽³⁾	< 0.08 ⁽³⁾	1.1	4	0
Chromium	4.4	0.8	27.6	4	0
Copper	13	2.6	57.8	4	0
Lead	4.5	2.7	39.8	4	0
Mercury	< 0.5 ⁽³⁾	< 0.5 ⁽³⁾	0.75	4	0
Nickel	1.9	< 0.3(3)	116	4	0
Selenium	<4.0 ⁽³⁾	<4.0 ⁽³⁾	10 ⁽²⁾	4	0
Zinc	12	4.9	414	4	0
Beryllium	< 0.2 ⁽³⁾	< 0.2 ⁽³⁾	-	4	-
Vanadium	19	<1.7 ⁽³⁾	-	4	-
Barium	63	12	-	4	-
Cyanide (Total)	< 10 ⁽³⁾	< 10 ⁽³⁾	50 ⁽²⁾	4	0

Total Phenol (Monohydric)	<10 ⁽³⁾	< 10 ⁽³⁾	7.5	4	0
Sulphide	< 5.0 ⁽³⁾	< 5.0 ⁽³⁾	-	4	-
рН	9.8	8.1	-	4	-
Naphthalene	< 0.01 ⁽³⁾	< 0.01 ⁽³⁾	13.2	4	0
Acenaphthylene	< 0.01 ⁽³⁾	< 0.01 ⁽³⁾	-	4	-
Acenaphthene	< 0.01 ⁽³⁾	< 0.01 ⁽³⁾	-	4	-
Fluorene	< 0.01 ⁽³⁾	< 0.01 ⁽³⁾	-	4	-
Phenanthrene	< 0.01 ⁽³⁾	< 0.01 ⁽³⁾	-	4	-
Anthracene	< 0.01 ⁽³⁾	< 0.01 ⁽³⁾	0.55	4	0
Fluoranthene	< 0.01 ⁽³⁾	< 0.01 ⁽³⁾	0.6	4	0
Pyrene	< 0.01 ⁽³⁾	< 0.01 ⁽³⁾	-	4	-
Benzo(a)anthracene	< 0.01 ⁽³⁾	< 0.01 ⁽³⁾	-	4	-
Chrysene	< 0.01 ⁽³⁾	< 0.01 ⁽³⁾	-	4	-
Benzo(b)fluoranthene	< 0.01 ⁽³⁾	< 0.01 ⁽³⁾	-	4	-
Benzo(k)fluoranthene	< 0.01 ⁽³⁾	< 0.01 ⁽³⁾	-	4	-
Benzo(a)pyrene	< 0.01 ⁽³⁾	< 0.01 ⁽³⁾	0.075	4	0
Indeno(1,2,3-cd)pyrene	< 0.01 ⁽³⁾	< 0.01 ⁽³⁾	-	4	-
Dibenz(a,h)anthracene	< 0.01 ⁽³⁾	< 0.01 ⁽³⁾	-	4	-
Benzo(g,h,i)perylene	< 0.01 ⁽³⁾	< 0.01 ⁽³⁾	-	4	-

1 SSV based upon Groundwater Threshold Values from The Water Framework Directive (England and Wales) Directions (2010), unless otherwise stated.

2 The Water Supply (Water Quality) Regulations 2010

- 3 Laboratory Limit of Detection
- 8.4.2 The analytical results record concentrations of leachable contaminants of potential concern to be below the relevant Level 1 SSV. Concentrations of organic contaminants (i.e. PAHS) were recorded below the laboratory limit of detect in all samples analysed.

8.5 Controlled Waters - Groundwater Analysis

8.5.1 Groundwater samples were taken from one location (BH01). Certificates of analysis are contained in Appendix G with results being summarised below in Table 8.4.

Table 8.4: Groundwater Analysis Summary

Contaminant	BH01 (µg/l)	SSV (µg/l) ⁽¹⁾	No. of Exceedances
Arsenic	7.7	199	0
Boron	42	750	0
Cadmium	< 0.08 ⁽³⁾	1.1	0
Chromium	8.4	27.6	0
Chromium (VI)	< 5.0 ⁽³⁾	3.4	0
Copper	0.19	57.8	0
Lead	27	39.8	0
Mercury	< 0.5 ⁽³⁾	0.75	0
Nickel	0.4	116	0
Selenium	<4.0 ⁽³⁾	10 ⁽²⁾	0
Zinc	4.8	414	0
Beryllium	< 0.2 ⁽³⁾	-	-
Vanadium	<1.7 ⁽³⁾	-	-
Barium	9.2	-	-
Antimony	<1.7 ⁽³⁾	5 ⁽³⁾	0

Contaminant	BH01 (µg/l)	SSV (µg/l) ⁽¹⁾	No. of Exceedances
Cobalt	0.4	-	-
Iron	0.19	0.2 ⁽³⁾	0
Manganese	27	-	-
Molybdenum	< 0.4 ⁽³⁾	-	-
Phosphorus	74.5	-	-
Tin	<1.0 ⁽³⁾	-	-
Ammonium as NH ₄	16	500 ⁽³⁾	0
Calcium	170	-	-
Magnesium	2.9	-	-
Potassium	1.7	-	-
Sodium	13	113	0
рН	7.1	-	-
Naphthalene	< 0.01 ⁽³⁾	13.2	0
Acenaphthylene	< 0.01 ⁽³⁾	-	-
Acenaphthene	< 0.01 ⁽³⁾	-	-
Fluorene	< 0.01 ⁽³⁾	-	-
Phenanthrene	< 0.01 ⁽³⁾	-	-
Anthracene	< 0.01 ⁽³⁾	0.55	0
Fluoranthene	< 0.01 ⁽³⁾	0.6	0
Pyrene	< 0.01 ⁽³⁾	-	-
Benzo(a)anthracene	< 0.01 ⁽³⁾	-	-
Chrysene	< 0.01 ⁽³⁾	-	-
Benzo(b)fluoranthene	< 0.01 ⁽³⁾	-	-
Benzo(k)fluoranthene	< 0.01 ⁽³⁾	-	-
Benzo(a)pyrene	< 0.01 ⁽³⁾	0.075	0
Indeno(1,2,3-cd)pyrene	< 0.01 ⁽³⁾	-	-
Dibenz(a,h)anthracene	< 0.01 ⁽³⁾	-	-
Benzo(g,h,i)perylene	< 0.01 ⁽³⁾	-	-
Total PAH	< 0.20 ⁽³⁾	-	-
Benzene	<1.0 ⁽³⁾	55.2	0
Toluene	< 1.0 ⁽³⁾	276	0
Ethylbenzene	< 1.0 ⁽³⁾	-	-
p & m-xylene	< 1.0 ⁽³⁾	37.5	0
o-xylene	< 1.0 ⁽³⁾	-	-
MTBE	< 1.0 ⁽³⁾	-	-
TPH Aliphatic C5-C35	<10 ⁽³⁾	-	-
TPH Aromatic C5-C35	<10 ⁽³⁾	-	-

1 SSV based upon Groundwater Threshold Values from The Water Framework Directive (England and Wales) Directions (2010), unless otherwise stated.

2 The Water Supply (Water Quality) Regulations 2010

3 Laboratory Limit of Detection

- 8.5.2 The laboratory analysis of the groundwater recorded concentrations of organic and inorganic determinands to be below the Tier 2 screening values deemed protective of controlled waters receptors.
- 8.5.3 In addition to the above, no Volatile Organic Compounds (VOCs) or Semi-Volatile Organic Compounds (SVOCs) were recorded above the laboratory limits of detection.

8.6 Ground Gas

- 8.6.1 3no. rounds of ground gas monitoring have been undertaken at the site at the time of this assessment.
- 8.6.2 All gas monitoring was undertaken using a calibrated GFM 430 infra red gas analyser fitted with an internal flow pod. The monitoring results are presented in Appendix I and summarised in Table 8.5 below.

Borehole	Response Zone/Strata	Evidence of potential source of ground gas	No. of monitoring occasions	Methane (%)	Carbon dioxide (%)	Oxygen (%)	Flow (I/hr)	Water levels (mbgl)	Range of atmospheric pressure (mb)
BH01	Natural	None	3	0.00	0.9 (0.0)	18.1 (18.3)	0.3 (-0.1)	18.53- 18.28	996- 1027
BH02	Natural	None	3	0.00	4.1 (1.3)	15.6 (18.5)	0.5 (0.1)	Dry	996- 1025
BH03	Natural	None	3	0.00	0.0	19.8 (20.4)	0.0	Dry	996- 1025
WS03	Natural	None	3	0.00	1.5 (0.6)	15.4 (19.8)	0.0	Dry	996- 1027
WS06	Made Ground	None	3	0.00	1.5 (1.3)	17.7 (18.2)	0.1 (0.0)	Dry	996- 1025
WS10	Natural	None	3	0.00	1.6 (0.8)	16.9 (19.3)	0.3 (-0.1)	Dry	996- 1025
WS11	Natural	None	3	0.00	0.4 (0.0)	19.9 (20.1)	0.0	Dry	996- 1024
WS13	Natural	None	3	0.00	0.3 (0.0)	19.4 (20.0)	0.0 (-0.1)	Dry	996- 1024

Table 8.5: Summary of Ground Gas Monitoring Data

- 8.6.3 Atmospheric pressure was recorded between 996mb and 1027mb during the monitoring visits. Atmospheric pressure was generally reported to be falling prior to the monitoring visits, with low pressure recorded during the first round of monitoring.
- 8.6.4 Maximum instantaneous flow rates between 0.4l/hr and 1.0l/hr were recorded within the monitored deeper boreholes (BH01 BH03), with maximum stable flow rates of 0.1l/hr recorded.
- 8.6.5 No concentrations of methane were recorded during any of the monitoring visits (i.e. below the limit of detection of the instrument (0.0%v/v)). The methane concentrations recorded are below the screening levels presented in current guidance for a low sensitivity end use (i.e. 1% for non-residential developments).
- 8.6.6 Concentrations of up to 4.1%v/v for carbon dioxide were recorded (BH02 during the second monitoring visit on 13 November 2013). All carbon dioxide concentrations recorded during the monitoring visits are below the screening levels presented in current guidance for a low sensitivity end use (i.e. 5% carbon dioxide for non-residential developments).
- 8.6.7 Reduced concetrations of oxygen were also recorded within BH02 (15.6%v/v), WS03 (15.4%v/v) and WS10 (16.9%v/v). No elevated concentrations of hydrogen sulphide or carbon monoxide were recorded during the monitoring visits.

- 8.6.8 Based on the ground gas monitoring undertaken to date, the proposed development area would be characterised, in accordance with current guidance (CIRIA C665) as have a maximum Gas Screening Value of 0.0l/hr for methane and 0.0041l/hr for carbon dioxide (based on maximum flow rates of 0.5l/hr, 0.0%v/v for methane and a steady flow of 0.1l/hr and 4.1%v/v for carbon dioxide).
- 8.6.9 Therefore, on the basis of Gas Screening Values recorded to date, site observations and maximum recorded concentrations, the site would be placed into Characteristic Situation 1 (<0.07l/hr) in accordance with the Revised Wilson and Card Classificiation detailed within CIRIA C665 for developments other than low rise housing. While, this is reported to be generally characteristic of naturally occuring soils observed on site, a futher two rounds of monitoring is proposed to confirm the gas regime at the site.
- 8.6.10 Notwithstanding this, information provided within the WYGE report undertaken across the site in 2003 (Ref: REPORT/E3696/JAV/NOV03/GTR/V2) reported a localised area of made ground comprising decayed organic matter to a depth of 7.3mbgl (BH103), which may provide a potential source for ground gas generation within the site. No ground gas monitoring is reported to have been undertaken as part of the works by WYGE. However, no evidence of this material was encountered during the current phase of investigation, including in exploratory holes located in proximity to the borehole where this material was formerly identified (WS13, WS15 and BH03).
- 8.6.11 The site is not situated within a Radon Affected Area as less than 1% of homes are reported above the Action Level. Therefore, no radon protective measures are required in the construction of new dwellings or extensions.

9 REFINED CONCEPTUAL MODEL

9.1 Introduction

9.1.1 The Preliminary Risk Assessment undertaken as part of this report identified the presence of potential significant pollutant linkages associated with the site and surrounds. Therefore, in accordance with the approach recommended in CLR11, additional information was collected about the site and its surroundings as part of a Generic Quantitative Risk Assessment. Based upon this additional information, the site conceptual model has been refined and pollutant linkages confirmed for evaluation where considered necessary.

9.2 Hazard Identification

9.2.1 Potential sources of contamination have been identified on and within the vicinity of the site and are presented in Table 9.1.

Identified Hazard/Source	Location	Details
Made Ground	On site	Made ground was reported to a maximum observed depth of 3.0mbgl (BH03).
		No visual or olfactory evidence of significant contamination was recorded at the site.
		A single exceedance of the Tier 1 SSV with regards to a commercial site end use was reported for lead (760mg/kg). In addition, when considering a residential end use for the site, three marginal exceedances of benzo(a)pyrene were reported following laboratory analysis.
		The general made ground encountered within the exploratory locations is not considered to be a potential significant source of ground gas based on its observed composition and general limited thickness (i.e. <3.0m thick and with low degradable organic content). Notwithstanding this, during the previous phase of investigation undertaken by WYGE in 2003, made ground comprising decayed organic matter was reported to a depth of 7.3mbgl in one location in the southern Gladstone Street car park, which may provide a potential source for ground gas generation, although this material was not encountered during the present phase of investigation.

 Table 9.1: Identified Hazards

Identified Hazard/Source	Location	Details
Potential contamination associated with historical engineering works, brewery and garage (with reported USTs and fuel pumps and associated infrastructure)	On site	Former hydrocarbon storage has been reported on site associated with the former garage present in the northern section of the site. A GPR survey identified an anomaly within the ground in the northern section of the site thought likely to be associated with these potential USTs.
		In addition, a historical brewery and engineering works have been recorded on site.
		No visual or olfactory evidence of gross contamination was reported on site during the intrusive investigation.
		Laboratory analysis of soil samples from the natural strata reported concentrations of determinands below the Tier 1 SSV for a commercial site end use (and a residential site end use).
		In addition, a single groundwater sample collected from within the vicinity of the reported former garage and engineering works recorded concentrations of determinands to be below the Tier 2 SSVs deemed protective of the underlying Principal Aquifer (concentrations of PAH and TPH compounds were recorded to be below the laboratory limit of detect).
Potentially contaminative current and historic processes off site	Off site	A number of potentially contaminative current and historic land uses were reported in proximity to the site. Notwithstanding this, no evidence of contamination was reported during the intrusive investigation and laboratory analysis of natural ground materials reported no exceedances with regards to a commercial site end use. A single groundwater sample collected from the site did not identify potential on-site migration of contaminants with all concentrations of determinands reported below Tier 2 SSVs.

9.3 Identified Potential Receptors and Pathways

- 9.3.1 Potential receptors identified as part of the generic risk assessment are:
 - Current/future site users;
 - Construction workers; and
 - Controlled waters (Principal Aquifer and surface waters)
- 9.3.2 Potential contaminant pathways identified as part of the generic risk assessment include:
 - Dermal contact contact with soil, dust or water;
 - Ingestion ingestion of soil, dust or water;
 - Inhalation inhalation of soil, dust or vapours;

- Vertical migration seepage of contaminants at the ground surface (i.e. leakage/spillage of hydrocarbons) through cracks in hardstanding and/or leaching of contaminants within the unsaturated zone resulting in vertical contaminant migration; and
- Horizontal migration lateral migration of contaminants within the saturated zone and along preferential pathways such as drainage pipe bedding.

9.4 Hazard Assessment and Risk Estimation

9.4.1 Potential significant pollutant linkages identified following completion of the intrusive works are summarised in the Refined Site Conceptual Model presented in Table 9.2.

Identified Hazard/ Source	I dentified Receptor	Potential Pathway to Receptors	Associated Hazard	Scale of Impact	Potential Consequence of Source-Receptor Linkage	Potential Likelihood for Significant Source- Receptor Linkage	Risk Classification
Made Ground	Site end users and construction workers	Exposure to potential contaminants through ingestion, inhalation and dermal contact.	Risk of harm to human health	Local	Medium	Unlikely to Low Likelihood: Made ground was encountered across the site to a maximum depth of 3.0mbgl (previously reported by WYGE up to 7.3mbgl in a localised area of the site). A single exceedance of lead was recorded of the SSVs for a commercial site end use and three	Low Risk
						marginal exceedances of benzo(a)pyrene with regards to a residential site end use. Short term (acute) exposure to the identified contaminant levels is not considered likely to cause harm to construction workers, provided appropriate health and safety procedures and brown field working practices are observed.	
	Controlled waters	Infiltration of water through made ground and unsaturated zone resulting in leaching of contaminants and potential vertical and horizontal migration of contaminants to and within controlled waters.	Risk to controlled waters (Principal Aquifer and surface waters)	Local to Regional	Medium	 Working practices are observed. Unlikely: Concentrations of some PAHs and lead were recorded within the sampled near surface made ground in exceedance of human health SSV. Notwithstanding this, no evidence of gross contamination was observed on site during the intrusive investigation. Furthermore, leachability analysis undertaken recorded no exceedances of the screening values deemed protective of identified controlled waters receptors. In addition, groundwater was only encountered in one location, at a depth of greater than 19mbgl. Therefore vertical migration of identified COPCs within the made ground into the underlying aquifer is considered to be unlikely. 	Low Risk

Table 9.2: Refined Conceptual Model (Hazard Assessment and Risk Estimation)

Identified Hazard/ Source	l dentified Receptor	Potential Pathway to Receptors	Associated Hazard	Scale of Impact	Potential Consequence of Source-Receptor Linkage	Potential Likelihood for Significant Source- Receptor Linkage	Risk Classification
	Future site end users and proposed development structures	Migration, ingress and inhalation of ground gasses	Risk of harm to human health and buildings	Local	Medium to Severe	 Unlikely (General made ground): Based upon the observed thickness and composition of the general made ground encountered on site, and in accordance with current guidance, the ground gas generation potential of this material is considered to be very low. Low Likelihood (localised deep made ground): A localised area of decayed organic matter was reported to a maximum depth of 7.3mbgl during a previous phase of investigation by WYGE in 2003, which may provide a localised source for ground gas generation. This material was not observed during the recent phase of works. 	Low Risk Low to Moderate Risk
Potential contamination associated with historical processes including a former garage with reported USTs and fuel pumps, a brewery and an engineering works	Site end users and construction workers	Exposure to contaminants through ingestion, vapour inhalation and dermal contact.	Risk of harm to human health	Local	Medium	Low Likelihood: No evidence of gross hydrocarbon contamination was observed on site during the intrusive investigation, confirmed by the laboratory testing of encountered ground materials. Furthermore, no visual or olfactory evidence of hydrocarbon contamination was observed within the targeted dynamic sample boreholes and hand dug pits surrounding this feature. Notwithstanding this, consideration to the removal of these features will be required prior to the redevelopment of the site and the potential for hydrocarbon contamination to be present beneath these suspected tanks cannot be fully discounted.	Low to Moderate Risk
	Controlled waters	Vertical migration of hydrocarbon contamination through made ground and underlying natural strata and potential horizontal migration along preferential pathways.	Risk to aquifer quality	Local and regional	Medium	Unlikely: No evidence of gross hydrocarbon contamination was observed on site during the intrusive investigation, confirmed by the laboratory testing of encountered ground materials. Groundwater was only encountered in one location, at a depth of greater than 19mbgl. Leachability and groundwater analysis undertaken recorded no exceedances of the screening values deemed protective of identified controlled waters receptors.	Low Risk

Identified Hazard/ Source	I dentified Receptor	Potential Pathway to Receptors	Associated Hazard	Scale of Impact	Potential Consequence of Source-Receptor Linkage	Potential Likelihood for Significant Source- Receptor Linkage	Risk Classification
Potentially contaminative current and historic on-site and off-site processes		Potential on site contaminant/gas migration from off-site sources	Risk to human health and controlled waters on site	Local	Medium	Unlikely: Potentially contaminative historic land uses have been recorded on and off site. Notwithstanding this, no visual or olfactory evidence of contaminant migration on to site was observed during TECs intrusive investigation. Given this and the distance to identified potential off-site sources, the potential likelihood of significant on-site contaminant migration would be considered unlikely.	Low Risk

10 GROUND ENGINEERING

10.1 Proposed Development

- 10.1.1 The final development plan for the site has not be made available to TEC. Notwithstanding this, it is understood that the proposed development is likely to comprise a mixed use development with commercial and potential residential buildings approximately three to four storeys in height along with potential basement car parking and areas of open recreational space.
- 10.1.2 Although full details of the proposed development have not yet been made available to TEC, for the purposes of this preliminary assessment loadings of up to 150kN per metre run and column loads of up to 1000kN have been assumed appropriate. Consequently, only preliminary ground engineering recommendations are provided here and there is likely to be a requirement for detailed ground investigation work in order to provide specific design parameters for the proposed scheme.

Site Preparation

- 10.1.3 It is understood that a number of services are present across the site area. Due consideration to realignment/ and or removal of any existing services on site should be given as appropriate.
- 10.1.4 Consideration will need to be given to the removal of hardstanding encountered across the site, in addition, potential foundations associated with historical onsite buildings were encountered in the southern Gladstone Street car park and within the northern section of site within the Records Office car park. A previous ground investigation undertaken for Hampshire County Council (1990) included a radar survey, which identified remnant walls and floors at depths up to 1m, a possible cellar and a suspected pit at a depth of approximately 2.0m. Consideration for the appropriate removal of these potential below ground obstructions will be required prior to the construction of the proposed development.
- 10.1.5 2003 (Ref: А investigation undertaken by WYGE in previous REPORT/E3696/JAV/NOV03/GIR/V2) reported made ground comprising decayed organic matter to a depth of 7.3mbgl in a single location located within the centre of the southern Gladstone Street car park. It was considered by WYGE that this may be associated with a possible solution feature in the chalk. As a consequence, suitable ground treatment may be required in this area to allow construction of the proposed development.
- 10.1.6 Information provided by Winchester City Council indicates a number of Underground Storage Tanks (USTs) may be present in the northern section of the site, associated with a former garage situated in this area. Further, the GPR survey identified a number of potential buried structures, considered likely to be associated with these USTs along the northern boundary of the site. It is understood from information provided by WCC Environmental Health that these USTs are concrete filled. However, it cannot be discounted, that if present removal of them could have an impact upon nearby current structures (e.g. buildings). Furthermore, additional investigation will need to be undertaken to determine their impact, if any, on proposed development structures and would be recommended to confirm the tanks have been decommissioned (concrete filled) as records indicate.
- 10.1.7 In addition, it is understood that a number of trees and shrubs will be retained on site. Consideration to the root zones of these trees should be given, as appropriate.

10.2 Ground Conditions

Made Ground

- 10.2.1 Made ground was encountered across the site to a maximum depth of 3.5mbgl (BH02) and was recorded as variable across the site. Notwithstanding this, a previous investigation undertaken by WYGE in 2003 (Ref: REPORT/E3696/JAV/NOV03/GIR/V2) reported made ground comprising decayed organic matter to a depth of 7.3mbgl in a single location located within the centre of the southern Gladstone Street car park. It was considered by WYGE that this may be associated with a possible solution feature in the chalk.
- 10.2.2 No geotechnical testing was undertaken on samples of the made ground. However, as a part of the geochemical testing undertaken for the site, pH and sulphate testing was undertaken on samples of encountered made ground. The test data indicated sulphate concentrations in the range of 0.0077g/l to 0.18g/l and pH values of 7.9 to 9.8.
- 10.2.3 The natural ground was encountered from depths between 0.1mbgl and 3.0mbgl to a maximum recorded depth of 25.0mbgl (BH01) and was generally observed to comprise structureless chalk (CIRIA Grade Dm/Dc?) generally recorded as clayey silt and clayey gravel to a maximum depth of 4.5mbgl (BH02). This in turn was recorded to be underlain by very weak to weak, low to medium density chalk becoming weak to moderately weak, medium to high density chalk with depth. Hard bands of flint were reported throughout the borehole. A CIRIA grade could not be attributed to the encountered chalk as a result of the drilling technique used to advance the boreholes.

10.3 Geotechnical Laboratory Data

- 10.3.1 Geotechnical laboratory analysis was conducted on 6no. samples of the chalk (natural strata). In addition, as part of the geochemical analysis, 2no. samples of the natural strata were tested for pH and water soluble sulphate. The results of these analyses are presented in Table 10.1 below.
- 10.3.2 Geotechnical test results are discussed below. Geotechnical laboratory test certificates are provided in Appendix H with in-situ tests being presented on the exploratory hole logs in Appendix F of this report.

Test	Number of Tests	Range of Results
Saturation Moisture Content – Chalk (%)	1	26
Moisture Content (%)	3	26 - 29
Porosity (%)	1	41
Dry Density (Mg/m ³)	1	1.6
Plasticity Index (%)	3	5 - 7
% passing 425µm sieve	3	67 - 89
SPT 'N' Values – Chalk	70	13 - >50
pH Value	6	8.7 - 8.9
SO4 (g/l in soil)	6	<0.1 - 0.10

Table 10.1: Summary of Laboratory Test Results - Natural Strata

Test	Number of Tests	Range of Results
Geochemical Analysis		
pH Value	2	7.9 - 8.2
SO4 (g/l in soil)	2	0.0077 - 0.13

- 10.3.3 An intact sample of the encountered chalk material was submitted for laboratory analysis of its Saturation Moisture Content (SMC). The results of single test recorded a dry density value of 1.6Mg/m³, indicating the chalk to be of medium density. Notwithstanding this, historic testing in the vicinity of the site suggested the chalk to be of variable density with test results indicating low to high density chalk being present.
- 10.3.4 Cohesive deposits were not encountered at the site, with the exception of a single thin band of gravelly clay (2.3m 2.5m) recorded overlying the chalk within BH01. Plasticity Indices of the sampled underlying chalk materials ranged between 5% and 7%, suggesting the materials to be non-plastic, as defined by the NHBC (2013). It is noted that the geotechnical laboratory describe the material submitted for testing as sandy chalk putty with some gravel.
- 10.3.5 Standard Penetration Tests (SPTs) undertaken within the chalk materials recorded 'N' values between 13 and >50. High 'N' values were recorded in a number of locations may be attributed to flint bands encountered across the site.
- 10.3.6 Both the geotechnical and geochemical testing on the natural ground included the analysis for water soluble sulphate and pH testing within the natural ground. The results indicate sulphate concentrations of between 0.0077g/l 0.13g/l and pH values of between 7.9 and 8.9.

10.4 Foundations

Ground Conditions

10.4.1 The natural ground was encountered from depths between 0.1mbgl and 3.5mbgl and observed to a maximum recorded depth of 25.0mbgl (BH01). The upper natural materials were generally observed to comprise structureless chalk (CIRIA Grade Dm/Dc?) (recorded as clayey silt and clayey gravel to a maximum depth of 4.5mbgl (BH02)). This in turn was recorded to be underlain by very weak to weak, low to medium density chalk becoming weak to moderately weak, medium to high density chalk with depth. Hard bands of flint were reported throughout the borehole. A CIRIA grade could not be attributed to the encountered chalk as a result of the drilling technique used to advance the boreholes.

Records Office Car Park (Area 1)

10.4.2 Chalk was recorded in three of the exploratory holes at depths between 1.3m and 2.5m (BH01) with the other exploratory holes terminated within made ground on brick obstructions. Competent chalk, recorded as very weak to weak and weak low to medium density chalk, was recorded at depths between 2.0m and 5.8m (BH01).

Registry Office Car Park (Area 2)

10.4.3 Chalk was recorded in all three of the exploratory holes at depths between 0.95m and 3.5m (BH02). Competent chalk, recorded as very weak to weak and weak low to medium and medium density chalk, was recorded at depths between 1.5m and

4.5m (BH02) and was recorded directly underlying made ground at a depth of 1.9m in WS06.

Central Section (Area 3)

10.4.4 Chalk was recorded in three of the exploratory holes at depths between 0.1m and 0.3m with WS08 being terminated within made ground on concrete at 0.9m. Competent chalk, recorded as very weak to weak and weak low to medium and medium density chalk, was recorded at depths between 0.3m and 0.6m.

Gladstone Street Car Park - (Area 4)

- 10.4.5 Chalk was recorded in four of the exploratory holes at depths between 1.0m and 2.95m with the other exploratory holes terminated with made ground on obstructions at depths between 1.9m and 3.0m. Competent chalk, recorded as very weak to weak and weak low to medium and medium density chalk was recorded at depths between 1.0m and 3.5m (BH03).
- 10.4.6 It should be noted that a previous investigation undertaken by WYGE in 2003 (Ref: REPORT/E3696/JAV/NOV03/GIR/V2) reported made ground comprising decayed organic matter to a depth of 7.3mbgl in a single location located within the centre of the southern Gladstone Street car park. It was considered by WYGE that this may be associated with a possible solution feature in the chalk. Furthermore, a previous ground investigation undertaken for Hampshire County Council (1990) included a radar survey, which identified a number of below ground structures within the car park area. No evidence for the removal of these structures has been obtained and therefore, it should be assumed that these features remain in situ within this area of the site.

Preliminary Ground Engineering Design Recommendations

- 10.4.7 On the basis of the field observations and ground conditions encountered together with the potential loads associated with the proposed three to four storey buildings, it is considered that conventional foundations may be suitable for relatively light weight structures at the site, founding within competent chalk recorded from depths of 0.3mbgl. Similarly, in some areas it is considered that the use of raft foundations may be appropriate to reduce ground pressures to below the chalk yield stress.
- 10.4.8 The ground materials have been recorded as non-plastic, in accordance with NHBC (2013) guidance, and therefore as general guidance would require a minimum founding depth of 0.75mbgl to be adopted within the design.
- 10.4.9 However, a significant thickness of made ground has been recorded at locations across the site. As a result of this, together with the presence of structureless chalk recorded to depths in excess of 5m (BH01) and the anticipated loads likely to be derived from the proposed structures, it is considered that that a piled solution may be the most appropriate founding solution for the proposed three to four storey scheme, founding within competent chalk encountered from depths of 0.3mbgl to 5.8mbgl (BH01).
- 10.4.10 Further, it should be noted that the Envirocheck[©] report records a number of manmade mining cavities in proximity to the site, all related to possible voids being encountered during piling operations within the chalk. In addition, a possible solution feature was recorded during previous investigation works by WYGE in the south-east of the site, with infilled ground/ made ground recorded to a depth of 7.3m. Notwithstanding this, while no evidence of solution features was reported

during the recent preliminary investigation works undertaken by TEC, due consideration should be given to the potential presence of voiding within the chalk.

Basement Wall / Pile Design

- 10.4.11 As a result of the presence of significant thicknesses of made ground across the site, it is considered that a cantilevered or propped/anchored piled wall system may be most suitable to form proposed basements. Further, when choosing the most appropriate pile type, it is suggested that a specialist piling contractor should be consulted regarding the piling options and detailed design of most appropriate option. However, it is assumed that owing to the proximity of adjacent structures and the environmental sensitivity of the site the use of either bored or CFA piles would be most appropriate.
- 10.4.12 CIRIA C574 recommends that for Upper Chalk, as encountered at the site, typical friction values (ϕ') of between 33° and 40° with a cohesion intercept of 20kN/m² are typical. Consequently, it is suggested that moderately conservative design parameters of c' = 20kN/m² and ϕ' = 39° and worst credible parameters of c' = 0 and ϕ' = 34° are likely to be appropriate.
- 10.4.13 However, it should be noted that chalk generally requires only very small strains for the in situ at-rest pressures to reduce significantly to a value that, in the limit, is a function of strength. For unpropped embedded walls, excavation on one side of the wall will lead to small wall deflections sufficient to reduce earth pressures behind the wall to an overall active state over most of the retained height, whereas earth pressures behind a propped retaining wall after excavation will be dependent on prop stiffness and stress redistribution.
- 10.4.14 CIRIA C574 recommends that values of K_a should be based on the effective angles of friction, therefore, K_a values would typically range from 0.2 to 0.3. This assumes a worst case of a discontinuity inclined at an angle ϕ' behind the back of the wall.
- 10.4.15 CIRIA Report C574 recommends that the following empirical relationship should be adopted for estimating the ultimate average shaft resistance, T_{sf}, of bored piles in medium density chalk.

$T_{sf} = 0.8 \times \sigma_{v'}$

where $\sigma_{v^{\prime}}$ is the average effective stress resulting from the overlying chalk.

10.4.16 Further, for CFA piles the CIRIA report recommends the ultimate average shaft resistance should be estimated from

$T_{sf} = 0.45 \ x \ \sigma_{v'}$

where $\sigma_{\!\scriptscriptstyle V}{}'$ is the average effective stress resulting from the overlying chalk.

- 10.4.17 However, it should be noted that the CIRIA report indicates this relationship to be proven where the ultimate average shaft resistance, T_{sf} , is below 110kN/m² and the average effective stress, $\sigma_{v'}$, is below 200kN/m².
- 10.4.18 CIRIA Report C574 recognises that SPT N value is an imprecise method of measuring the strength of chalk at the base of a pile. However, it also indicates that until a better, more economical method has been found, it is likely to persist. The report recommends that, subject to the limitation of the crushing strength of concrete, the following ultimate base stresses be adopted:

Bored piles - ultimate base stress, $q_u = 200 \text{ x} \text{ 'N' } \text{kN/m}^2$

CFA piles - ultimate base stress, $q_u = 200 \text{ x} \text{ 'N' } \text{kN/m}^2$

Basement Floor Slabs

10.4.19 Although design details have not been provided, it is assumed that basements will be formed within the underlying low to medium density chalk. CIRIA Report C574 provides correlations between dry density and Secant Modulus. However, owing to the method of investigation it was not possible to reliably determine the chalk grades encountered and, while it is recognised that further investigation may determine more reliable density characteristics for the chalk encountered at the site, it is suggested that a preliminary modulus value of in the order of 1000MN/m² for a Grade C, i.e. joints open and less than 3mm, low density chalk, is assumed for design at this stage.

Ground Floor Slabs

- 10.4.20 Made ground was recorded up to 3.5mbgl below current ground level (BH02) requiring floor slabs to be suspended where at approximate ground level.
- 10.4.21 Notwithstanding this, where fill material is less than 600mm and the proposed structure is wholly within competent natural ground or following removal of the made ground, a ground bearing slab may be utilised. CIRIA Report C574 suggests that a preliminary modulus value of in the order of 75MN/m2 for a Grade Dc is assumed for design at this stage.

10.5 Preliminary Pavement Design

- 10.5.1 Five Dynamic Cone Penetrometer (DCP-TRL) tests were undertaken across the site. The results are presented in Appendix J.
- 10.5.2 Using the UKDCP software package, the results indicated California Bearing Ratio (CBR) values of between 1% and 101% across the site. CBR values of between 11% and 101% were recorded below the assumed formation level (500mmbgl). Based upon the DCP data obtained to-date, an estimated CBR value of >10% is suggested for preliminary design purposes where within natural ground.
- 10.5.3 Notwithstanding this, given the significant thickness of made ground encountered across the site (greater than 600mm), a CBR value of <2.5% would be recommended for preliminary design purposes where road formation is proven to be within potential made ground deposits owing to the inherent variability of this material.
- 10.5.4 It should be noted that all road formations should be proof rolled and soft spots removed and replaced with selected granular fill and, where adoptable, a pavement of sufficient thickness (>450mm) to prevent the penetration of frost should be employed.

10.6 Excavations

- 10.6.1 Excavation of the materials immediately beneath the site should be achievable using conventional excavation plant.
- 10.6.2 Based on the observations made during the recent intrusive works, groundwater ingress is unlikely to be a significant issue within excavations. Therefore, significant dewatering works are unlikely to be required during excavation and formation works.

- 10.6.3 Consideration should be given to the utilisation of appropriate temporary works during any excavation works within the made ground recorded at the site.
- 10.6.4 Where excavations extend beyond 1.2m depth and are within soils, it is recommended that appropriate shoring/temporary works is used i.e. in accordance with current Health and Safety requirements where access for personnel is required.

10.7 Protection of Buried Concrete

- 10.7.1 In accordance with BRE Special Digest 1, the made ground sampled yielded an Aggressive Chemical Environment Class (ACEC) of AC-1. The results of the water soluble sulphate content and pH testing carried out on the samples of the made ground showed the materials to fall into Class DS-1.
- 10.7.2 In addition, the results of the water soluble sulphate content and pH testing carried out on the samples of the natural ground yield an Aggressive Chemical Environment Class (ACEC) of AC-1 requiring Design Sulphate Class DS-1.
- 10.7.3 Consequently, following the recommendations of BRE SD1:2005, it is recommended that a Design Sulphate Class DS-1 is utilised.

11 CONCLUSIONS & RECOMMENDATIONS

11.1 Conclusions

- 11.1.1 Tweedie Evans Consulting Ltd (TEC) has been appointed by Winchester City Council to undertake a geo-environmental and geotechnical assessment for the Carfax site, Winchester in accordance with our proposal letter dated 06 September 2013 and referenced 1308015.001_006.bidlet.
- 11.1.2 The site is bounded by three roads; Station Road along the northern and western boundary, Gladstone Street along the southern boundary and Sussex Street along the eastern boundary. The site covers an area of approximately 0.77Ha with the centre of the site located at National Grid Reference 447800, 129900. The nearest postcode is SO23 8TJ.
- 11.1.3 The site currently comprises an irregular shaped parcel of land, which can be divided into four sections is used primarily for a range of car parks with associated soft landscaping whilst the County Council Registry Office is present in the north-western corner of the site. Adjacent to the eastern boundary of the site is the County Council Records Office and further car parking to the south-west of the site.
- 11.1.4 Although full details of the proposed development have not been made available to TEC, it is understood the redevelopment is to comprise a mixed use site comprising a combination of three to four storey office space, commercial properties, residential buildings, soft landscaped areas and car parking.
- 11.1.5 The site is considered to be of moderate to high environmental sensitivity, primarily due to the underlying Upper Chalk Formation classified as a Principal Aquifer and the close proximity of Source Protection Zones I, II and III, understood to be associated with an abstraction borehole located ~495m south-west of the site.
- 11.1.6 The northern site area is shown on historical maps to have previously been occupied by an engineering works and a former garage. WCC report records of historical USTs and evidence of fuel pumps associated with the former garage. In addition, a brewery is shown on historical maps in the southern site area.
- 11.1.7 A previous phase of assessment works by WYGE reported that no visual or olfactory evidence of contamination was observed on the site during the works (and therefore no geochemical analysis was reported to have been undertaken).
- 11.1.8 In addition, no evidence of significant contamination was recorded at the site during the recent works by TEC. Laboratory analysis of soils from varying depths across the site and a single groundwater sample (BH01) confirms these observations.
- 11.1.9 Made ground was encountered across the site to a maximum observed depth of 3.0mbgl. Notwithstanding this, previous investigations undertaken at the site by WYGE in 2003 reported made ground up to 7.3mbgl in a single location in the southern car park. Concentrations of lead were recorded within the sampled made ground in exceedance of the SSV deemed protective of human health for a commercial site end use. Furthermore, marginal exceedances of benzo(a)pyrene were reported in a number of locations across the site when considering a residential site end use.
- 11.1.10 Initial ground gas monitoring undertaken at the site following the intrusive site works would place the underlying ground materials into Characteristic Situation 1 (<0.07I/hr), in accordance with the Revised Wilson and Card Classification detailed within CIRIA C665. Notwithstanding this, a localised risk from the recorded deeper organic material reported by WYGE within the southern car part cannot be

discounted. No ground gas monitoring was reported to have been undertaken as part of the assessment works by WYGE and similar ground conditions were not encountered during the recent phase of works by TEC. No radon protective measures are reported as necessary.

- 11.1.11 Based upon our current conceptual understanding of the site and the proposed end use, the main potential Significant Pollutant Linkages identified are considered to be:
 - Human health (including future site end users) exposure to potential contaminants (PAHs and lead) within made ground encountered at the site through the ingestion, inhalation and dermal contact pathways;
 - Human Health and Proposed Development Structures A potential localised risk from migration, ingress and inhalation of ground gasses from reported localised deep organic made ground materials (reported by WYGE in 2003). Notwithstanding this, three rounds of monitoring have been undertaken at the site by TEC to date, which have not identified significantly elevated levels of ground gases, indicating there to be no evidence of lateral migration of ground gas from this reported feature;
 - Historical storage of hydrocarbons information provided by Winchester City • Council indicates that a number of tanks were previously located along the northern boundary of the site. It is understood these tanks have been concrete filled although there is no available information as to whether these tanks and associated infrastructure (e.g. fuel lines) have been removed from site. A GPR survey undertaken within the area recorded a ground anomaly, considered likely to be associated with these features. It is therefore considered likely that historical USTs are still present at the site. Limited investigations in the area of the historical tanks did not identify concentrations of TPH or VOCs to be present within the sampled material. However, it is acknowledged that the extent of investigations in this area was limited by the presence of below ground structures preventing the advancement of boreholes and the potential for historical USTs to be present. The status of these USTs is currently unknown and the potential for the presence of hydrocarbon contamination directly beneath remaining in-situ USTs cannot be discounted at this stage.

11.2 Geo-Environmental Risk Management Recommendations

Identification of Feasible Remediation Options

11.2.1 Significant risks identified within the conceptual model can be mitigated through the breaking of the significant pollution linkage by the removal of at least the source, receptor or pathway. Within reference to the site's conceptual models the following preliminary remediation approach has been prepared. This preliminary remediation approach will need to be presented in more detail within a Remediation Strategy, the content of which will require agreement in writing of the Regulatory Authorities prior to commencing any remediation on site.

Human Health

11.2.2 A single exceedance for lead was recorded within the sampled near surface material within the Registry office car park in the western section of the site, in relation to generic commercial SSVs. Furthermore, a number of marginal exceedances of benzo(a)pyrene were recorded in a number of near surface samples across the site with regards to a residential site end use.

- 11.2.3 It is understood that much of the site is to be within the proposed building footprint, or laid to hardstanding. Therefore, where present, the presence of hardstanding or buildings would likely mitigate the risk to human health from any further potential made ground.
- 11.2.4 However, where the soft landscaping is proposed and where made ground remains in such areas after finish site levels have been achieved, exposure to potential contaminants cannot be discounted. Therefore, it would be recommended that a suitable cover system be provided within such areas. Given the levels identified, this clean cover system will likely comprise a thickness of imported clean cover material. Notwithstanding this, it cannot be discounted that further analysis and assessment of the made ground in the areas where soft landscaping is proposed could be undertaken further assess the need / scope for these remedial measures on site.
- 11.2.5 A number of potential historical USTs have been identified in the northern section of the site that are considered likely to still be present based on information provided by WCC and from a GPR survey undertaken, which identified an anomaly in this area of the site. WCC report the tanks to have been concrete filled in 1977, although this has not been confirmed as part of these assessment works.
- 11.2.6 It is considered that the potential presence of tanks on site requires further investigation to determine the number and status of any tanks currently left in situ. Any remaining tanks may present a potential risk to human health and controlled waters and future structures and therefore will require further assessment prior to development works commencing.
- 11.2.7 Good brownfield site working practices should be adopted by construction workers to mitigate against the identified potential risks.
- 11.2.8 Should water supply pipes be placed within the made ground encountered at the site, due consideration would need to be given to the UK Water Industry Research Ltd (UKWIR) guidance.
- 11.2.9 Based on our conceptual understanding of the site to date, it would be anticipated that a similar ground profile to those encountered within this assessment are present across the site area. However, should a greater thickness of made ground or visual or olfactory evidence of potentially significant contamination be identified during the development works, further investigation and assessment may be required.

Controlled Waters

- 11.2.10 The risk to controlled waters from identified historical processes at the site is considered to be low owing to the laboratory analysis of groundwater recording concentrations of organic and inorganic determinands to be below the Tier 2 screening value deemed protective of controlled water receptors. In addition, no Volatile Organic Compounds (VOCs) or Semi-Volatile Organic Compounds (SVOCs) were recorded above the laboratory limits of detection.
- 11.2.11 Furthermore, the analytical results recorded concentrations of leachable contaminants of potential concern within made ground materials to be below the relevant Level 1 SSV. Concentrations of organic contaminants (i.e. PAHS) were recorded below the laboratory limit of detect in all samples analysed.

Ground Gas

11.2.12 Initial ground gas monitoring undertaken at the site following the intrusive site works would place the underlying ground materials into Characteristic Situation 1

(<0.07I/hr), in accordance with the Revised Wilson and Card Classification detailed within CIRIA C665. Therefore, it is considered that specific gas protection measures are unlikely to be required as part of the development. Notwithstanding this, it would be recommended that further assessment of the ground gas regime within the location of reported deeper organic material (WYGE borehole BH103) is undertaken prior to potential development works in this area.

11.2.13 No radon protective measures are reported as necessary.

11.3 Ground Engineering

Preliminary Design Recommendations

- 11.3.1 On the basis of the field observations and ground conditions encountered together with the potential loads associated with the proposed three to four storey buildings, it is considered that conventional foundations may be suitable for relatively light weight structures at the site, founding within competent chalk recorded from depths of 0.3mbgl. Similarly, in some areas it is considered that the use of raft foundations may be appropriate to reduce ground pressures to below the chalk yield stress.
- 11.3.2 The ground materials have been recorded as non-plastic, in accordance with NHBC (2013) guidance, and therefore as general guidance would require a minimum founding depth of 0.75mbgl to be adopted within the design.
- 11.3.3 However, it is considered that that a piled solution may be the most appropriate founding solution for the proposed three to four storey scheme, founding within competent chalk encountered from depths of 0.3mbgl to 5.8mbgl.
- 11.3.4 Further, it should be noted that, while no evidence of solution features/voiding was reported during the recent preliminary investigation works undertaken by TEC, there is evidence of voiding within the chalk in the vicinity of the site and therefore due consideration should be given this within the design.

Basement Wall / Pile Design

- 11.3.5 As a result of the presence of significant thicknesses of made ground across the site, it is considered that a cantilevered or propped/anchored piled wall system may be most suitable to form proposed basements and for the purpose of this assessment. it is assumed that owing to the proximity of adjacent structures and the environmental sensitivity of the site the use of either bored or CFA piles would be most appropriate.
- 11.3.6 CIRIA C574 recommends appropriate deign parameters based on the observations made during the recent ground investigation and suggests that moderately conservative design parameters of c' = $20kN/m^2$ and $\phi' = 39^\circ$ and worst credible parameters of c' = 0 and $\phi' = 34^\circ$ are likely to be appropriate.
- 11.3.7 CIRIA Report C574 recommends that the following empirical relationship should be adopted for estimating the ultimate average shaft resistance, T_{sf}, of bored piles in medium density chalk.

$$T_{sf} = 0.8 \times \sigma_{v'}$$

where $\sigma_{\!v}{}^\prime$ is the average effective stress resulting from the overlying chalk.

11.3.8 Further, for CFA piles the CIRIA report recommends the ultimate average shaft resistance should be estimated from

$$\Gamma_{\rm sf} = 0.45 \ {\rm x} \ \sigma_{\rm v'}$$

where $\sigma_{\!v}{}'$ is the average effective stress resulting from the overlying chalk.

11.3.9 CIRIA Report C574 recommends that, subject to the limitation of the crushing strength of concrete, the following ultimate base stresses be adopted:

Bored piles - ultimate base stress, $q_u = 200 \text{ x} \text{ 'N' } \text{kN/m}^2$

CFA piles - ultimate base stress, $q_u = 200 \text{ x} \text{ 'N' kN/m}^2$

Basement Floor Slabs

11.3.10 Although design details have not been provided, it is assumed that basements will be formed within the underlying low to medium density chalk recorded at the site and therefore a preliminary modulus value of in the order of 1000MN/m² for a Grade C, i.e. joints open and less than 3mm, low density chalk, may be assumed for design at this stage.

Ground Floor Slabs

- 11.3.11 Made ground was recorded up to 3.5mbgl below current ground level (BH02) requiring floor slabs to be suspended where at approximate ground level.
- 11.3.12 Notwithstanding this, where the proposed structure is wholly within competent natural ground a ground bearing slab may be utilised. CIRIA Report C574 suggests that a preliminary modulus value of in the order of 75MN/m² for a Grade Dc may be assumed for design at this stage.

Preliminary Pavement Design

- 11.3.13 The results of the in situ dynamic cone penetration (DCP) undertaken within the area of the proposed access road across the site indicates CBR values to be between 1% and 101% for the underlying materials. Therefore, a CBR of >10% should be used for preliminary pavement design for any potential future development works.
- 11.3.14 Notwithstanding this, given the significant thickness of made ground encountered across the site (greater than 600mm), a CBR value of <2.5% would be recommended for preliminary design purposes where road formation is proven to be within potential made ground deposits owing to the inherent variability of this material.

Protection of Buried Concrete

- 11.3.15 In accordance with BRE Special Digest 1, the made ground sampled yielded an Aggressive Chemical Environment Class (ACEC) of AC-1. The results of the water soluble sulphate content and pH testing carried out on the samples of the made ground showed the materials to fall into Class DS-1.
- 11.3.16 In addition, the results of the water soluble sulphate content and pH testing carried out on the samples of the natural ground yield an Aggressive Chemical Environment Class (ACEC) of AC-1 requiring Design Sulphate Class DS-1.
- 11.3.17 Consequently, following the recommendations of BRE SD1:2005, it is recommended that a Design Sulphate Class DS-1 is utilised.

Recommended Further Works

- 11.3.18 Given the assessment presented within this report, the following additional works would be recommended to fully define the geo-environmental and geotechnical issues associated with the site.
 - Trial pitting investigation within the northern area of the site after removal of the identified USTs to confirm the current conclusions that gross contamination is absent in this area.
 - Additional investigation in the area of the probable solution feature in the Gladstone Street car park area to better constrain the extent of this feature as well as allowing localised ground gas monitoring.
 - To enable detailed design of the proposed structures to be undertaken, it will be necessary to complete a more detailed ground investigation to provide confidence in the selected design parameters.

TWEEDIE EVANS CONSULTING LIMITED

BIBLIOGRAPHY

BGS - Lexicon of rocks: www.bgs.ac.uk/lexicon

BRE Special Digest 1 (2005) - Concrete in Aggressive Ground

BRE (2007) - Radon: Protective measures for new dwellings (BR211)

BRE (2009) - Good Building Guide 74 Radon protection for new dwellings

BSEN 1997-1 (2004) Eurocode 7. Geotechnical Design. General rules

BSEN 1997-2 (2007) Eurocode 7. Geotechnical Design. Ground investigation and testing

BSEN 22475 (2006) Geotechnical investigation and testing. Sampling methods and groundwater measurements. Technical principles for execution

BS1377 - British Standards Institute (1990) Methods of Test for Soils for Civil Engineer Purposes

BS5930 – Amendment 2 – British Standards Institute (2010) Code of Practice for Site Investigation.

 $\mathsf{BS8576:2013}$ – Guidance on investigations for ground gas – Permanent gases and Volatile Organic Compounds (VOCs).

BS10175:2011+A1:2013 - British Standards Institute (2011) Investigation of Potentially Contaminated Land - Code of Practice.

CIRIA C552 (2001) - Contaminated Land Risk Assessment: A Guide to Good Practice

CIRIA C574 (2002) - Engineering in Chalk.

CIRIA C665 (2007) - Assessing Risk Posed by Hazardous Ground Gasses to Buildings (revised).

Chartered Institute of Environmental Health (CIEH) and CL:AIRE (2008) - Guidance on Comparing Soil Contamination Data with a Critical Concentration

CL:AIRE (2009) - The Soil Generic Assessment Criteria for Human Health Risk Assessment

DEFRA and Environment Agency (2002) - Assessment of Risks to Human Health from Land Contamination: An Overview of the Development of Soil Guideline Values and Related Research. R&D Publication CLR7

DEFRA and the Environment Agency (2004) - Model Procedures for the Management of Land Contamination. R&D Publication CLR11 $\,$

DoT Design Manual for Roads and Bridges, Interim Guidance Note IAN 73/06 (Rev. 1) - Design Guidance for Road Pavement Foundations (Draft HD25)

Environment Agency (July 2005) - Guidance on Requirements for Land Contamination Reports

Environment Agency (2008a) - Updated technical background to the CLEA model. Science Report SC050021/SR3. Bristol: Environment Agency

Environment Agency (2008b) - Human health toxicological assessment of contaminants in soil. Science Report SC050021/SR2. Bristol: Environment Agency

Environment Agency (2009a) - Updated technical background to the CLEA model. Science Report SC050021/SR3. Bristol: Environment Agency

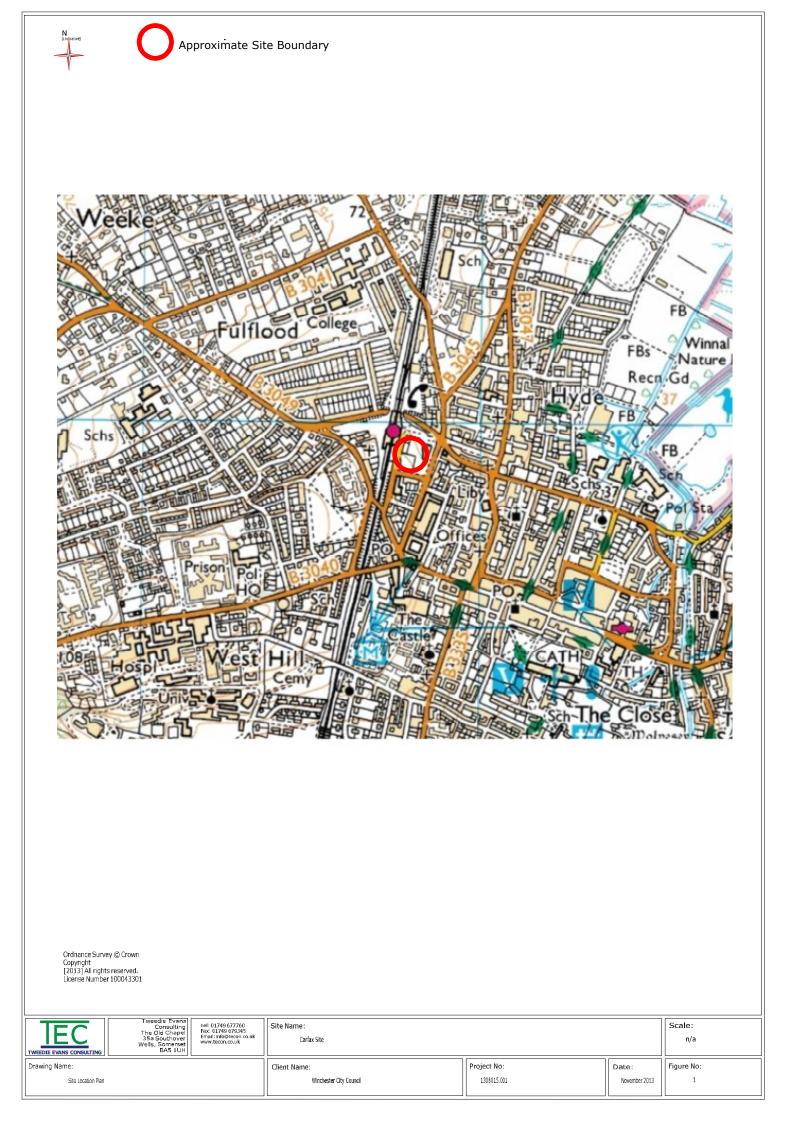
Environment Agency (2009b) - Human health toxicological assessment of contaminants in soil. Science Report SC050021/SR2. Bristol: Environment Agency

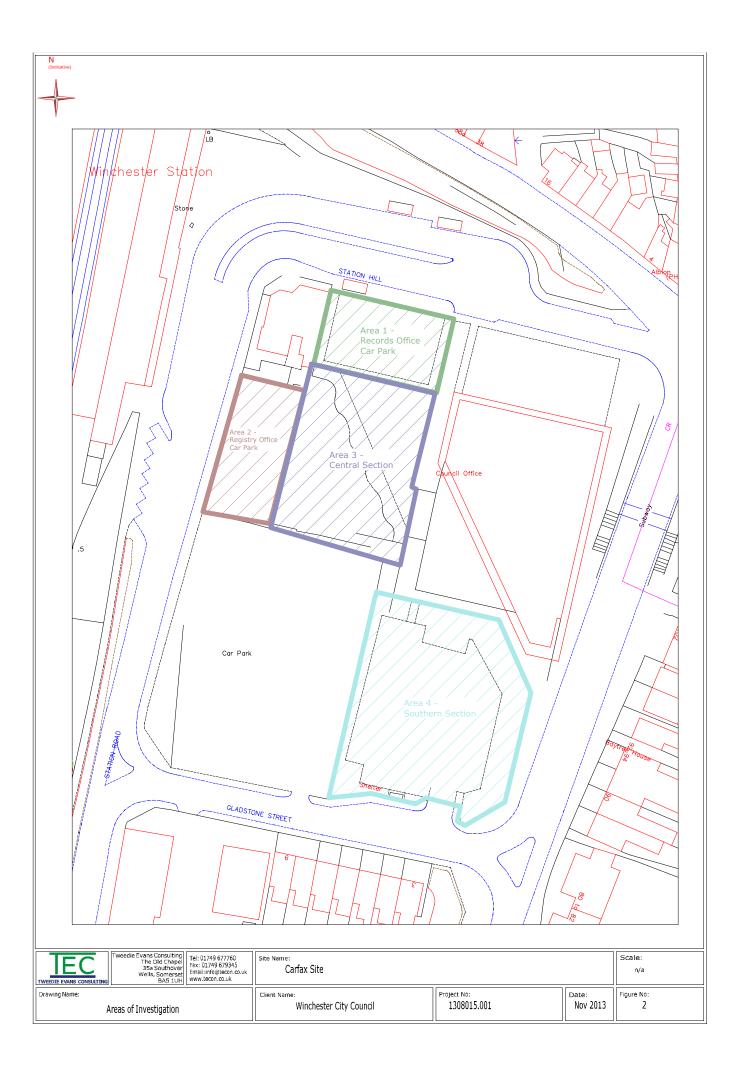
Environment Agency (2009c) – CLEA Software (Version 1.05) Handbook. Science Report SC050021/SR4. Bristol: Environment Agency

Environment Agency (2009d) – Soil Guideline Values for inorganic Arsenic in Soil. Science Report SC050021/arsenic SGV. Bristol: Environment Agency

Environment Agency (2009e), Using Soil Guideline Values Better Regulation Science Programme, Science Report SC050021/SGV Introduction

LQM/CIEH (2009). Generic Assessment Criteria for Human Health Risk Assessment, 2nd Edition


NHBC (2008) - Guidance for the Safe Development of Housing on Land Affected by Contamination


NHBC (2013) - National House Building Council Standard

UK Water Industry Research Ltd (UKWIR) (2011) - Guidance for the Selection of Water Supply Pipes to be used in Brownfield Sites

Wilson, Card and Haines (2009) - Ground Gas Handbook

FIGURES

APPENDIX A

Site Photographs

Photograph 1: View of Area 3 – facing south.

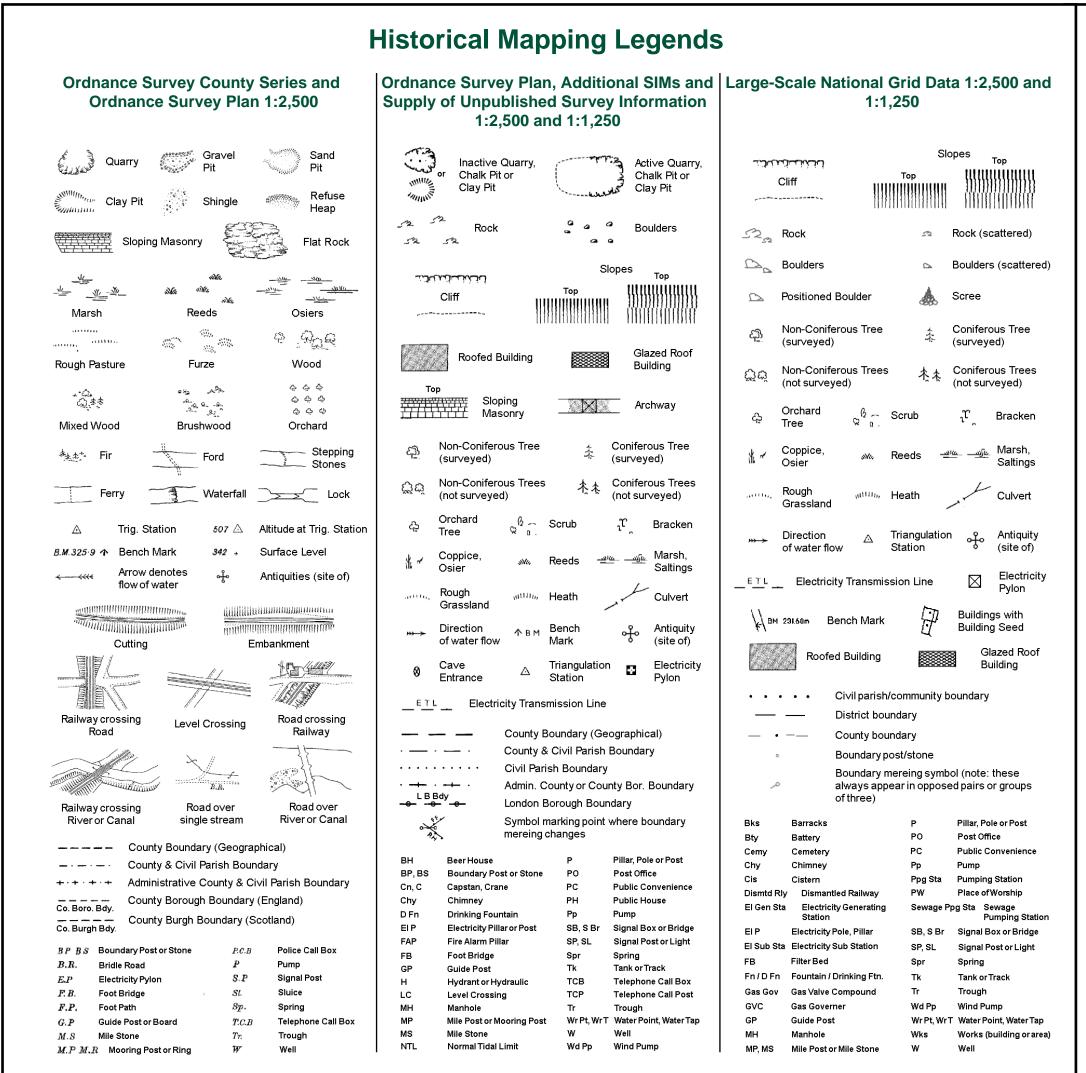
Photograph 2: View of Area 3 – facing west.

Photograph 3: View of Area 3 – facing north-west.

Photograph 4: View of Area 4 – facing south-west.

Photograph 5: View of Area 4 entrance – facing south.

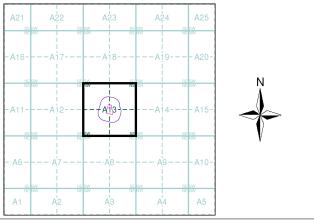
Photograph 6: View of Area 4 – facing north.


Photograph 7: View of Are 1 facing east.

Photograph 8: View of Area 2 – facing south.

APPENDIX B

Historical Maps



TWEEDIE EVANS CONSULTING Historical Mapping & Photography included:

Mapping Type	Scale	Date	Pg
Hampshire & Isle Of Wight	1:2,500	1871	2
Hampshire & Isle Of Wight	1:2,500	1897	3
Hampshire & Isle Of Wight	1:2,500	1909	4
Hampshire & Isle Of Wight	1:2,500	1932	5
Ordnance Survey Plan	1:1,250	1952 - 1953	6
Ordnance Survey Plan	1:2,500	1953 - 1954	7
Ordnance Survey Plan	1:1,250	1965 - 1970	8
Ordnance Survey Plan	1:2,500	1967 - 1971	9
Ordnance Survey Plan	1:2,500	1969	10
Ordnance Survey Plan	1:1,250	1974 - 1991	11
Supply of Unpublished Survey Information	1:1,250	1975	12
Additional SIMs	1:1,250	1985 - 1991	13
Additional SIMs	1:1,250	1988	14
Additional SIMs	1:1,250	1991	15
Large-Scale National Grid Data	1:1,250	1993	16
Large-Scale National Grid Data	1:1,250	1993 - 1994	17
Large-Scale National Grid Data	1:1,250	1996	18

Historical Map - Segment A13

Order Details

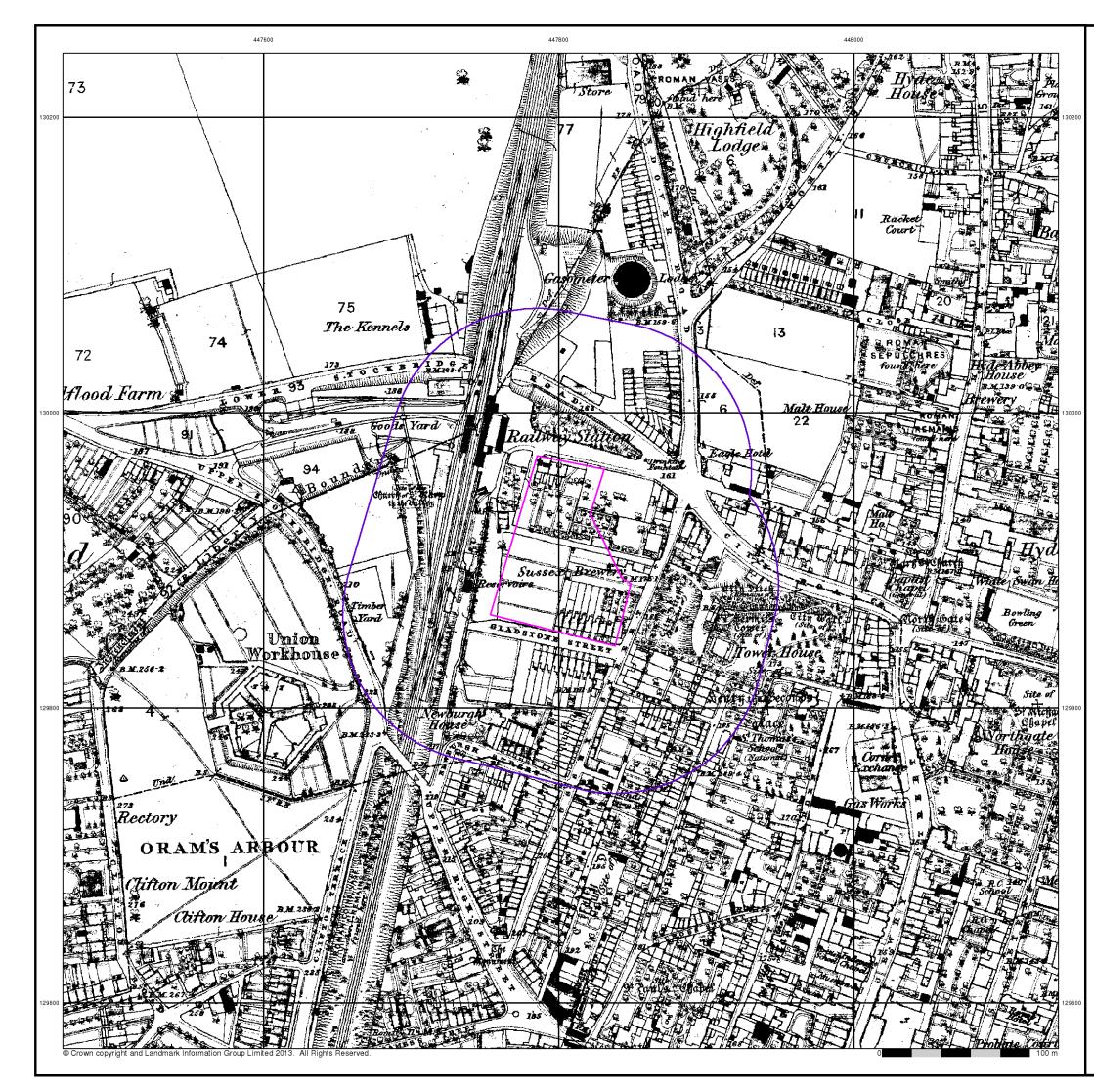
 Order Number:
 50116218_1_1

 Customer Ref:
 1308015.001

 National Grid Reference:
 447800, 129900

 Slice:
 A

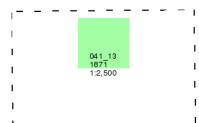
 Site Area (Ha):
 0.77


 Search Buffer (m):
 100

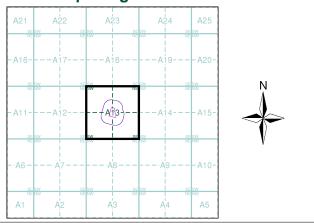
Site Details

Hampshire Register Office, Station Hill, WINCHESTER, Hampshire, SO23 8TJ

Tel: Fax: Web:



Published 1871


Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

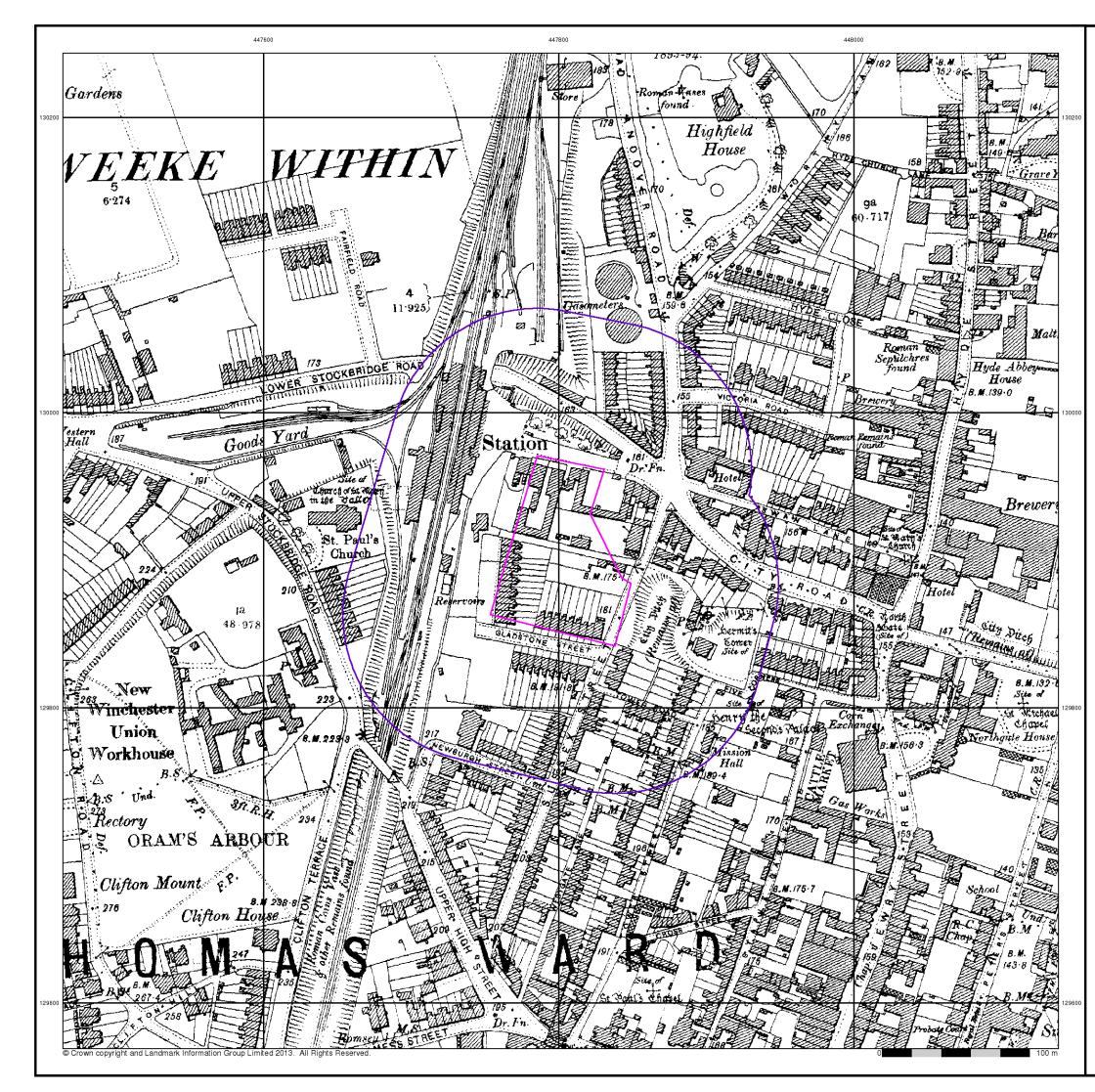
Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

Order Number:	50116218_1_1
Customer Ref:	1308015.001
National Grid Reference:	447800, 129900
Slice:	A
Site Area (Ha):	0.77
Search Buffer (m):	100

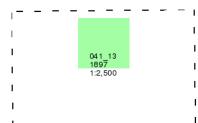
Site Details


Hampshire Register Office, Station Hill, WINCHESTER, Hampshire, SO23 8TJ

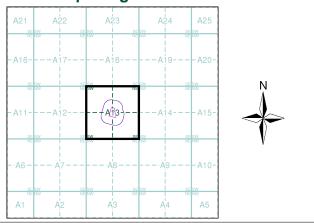
0844 844 9952 0844 844 9951 www.envirocheck.co.uk

Tel: Fax:

Web



Published 1897


Source map scale - 1:2,500

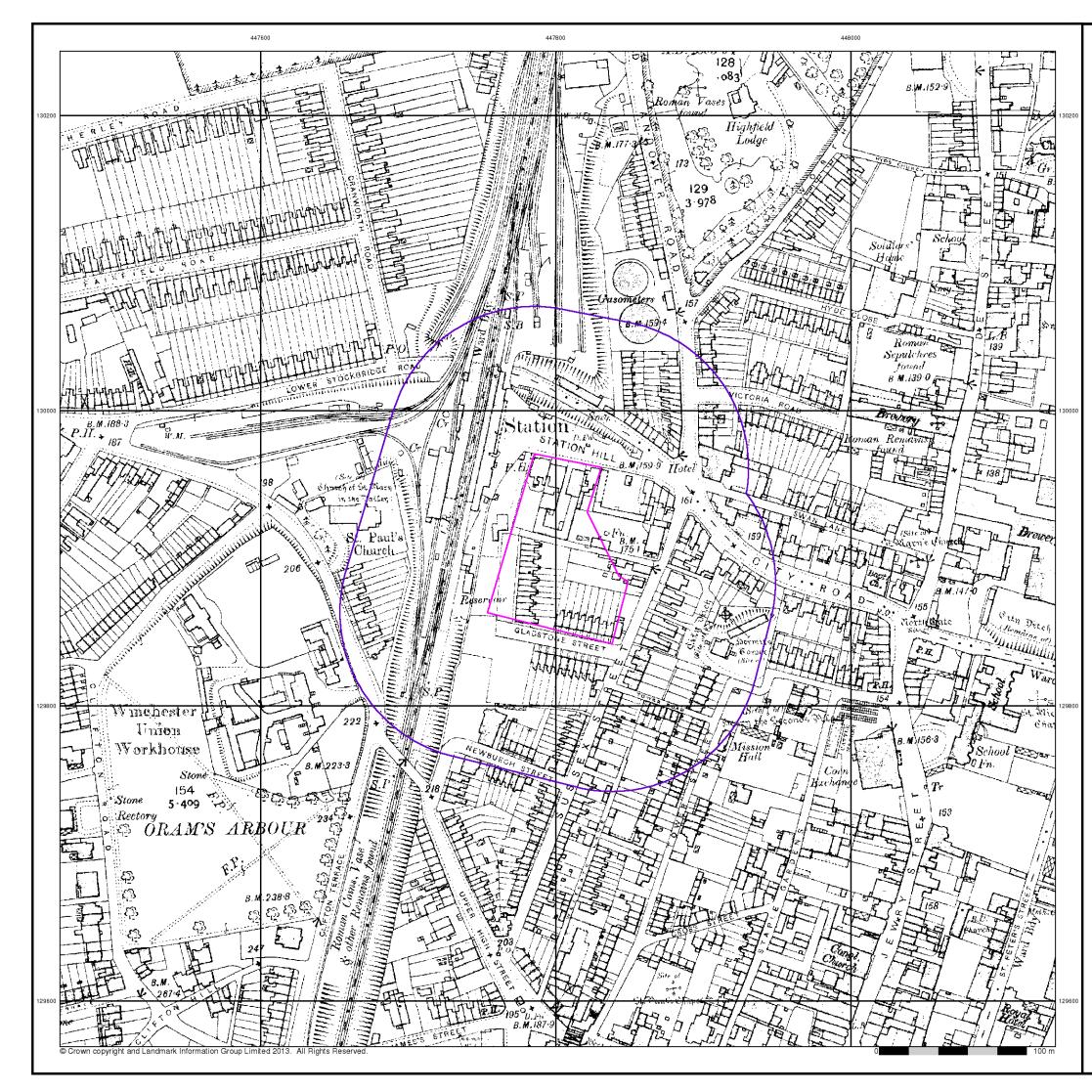
The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

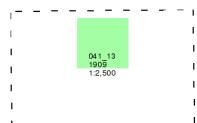
Order Number:	50116218_1_1
Customer Ref:	1308015.001
National Grid Reference:	447800, 129900
Slice:	A
Site Area (Ha):	0.77
Search Buffer (m):	100


Site Details

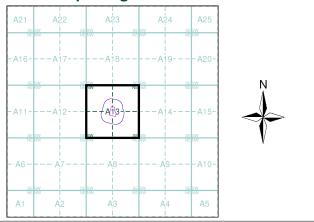
Hampshire Register Office, Station Hill, WINCHESTER, Hampshire, SO23 8TJ

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

Tel: Fax:



Published 1909


Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

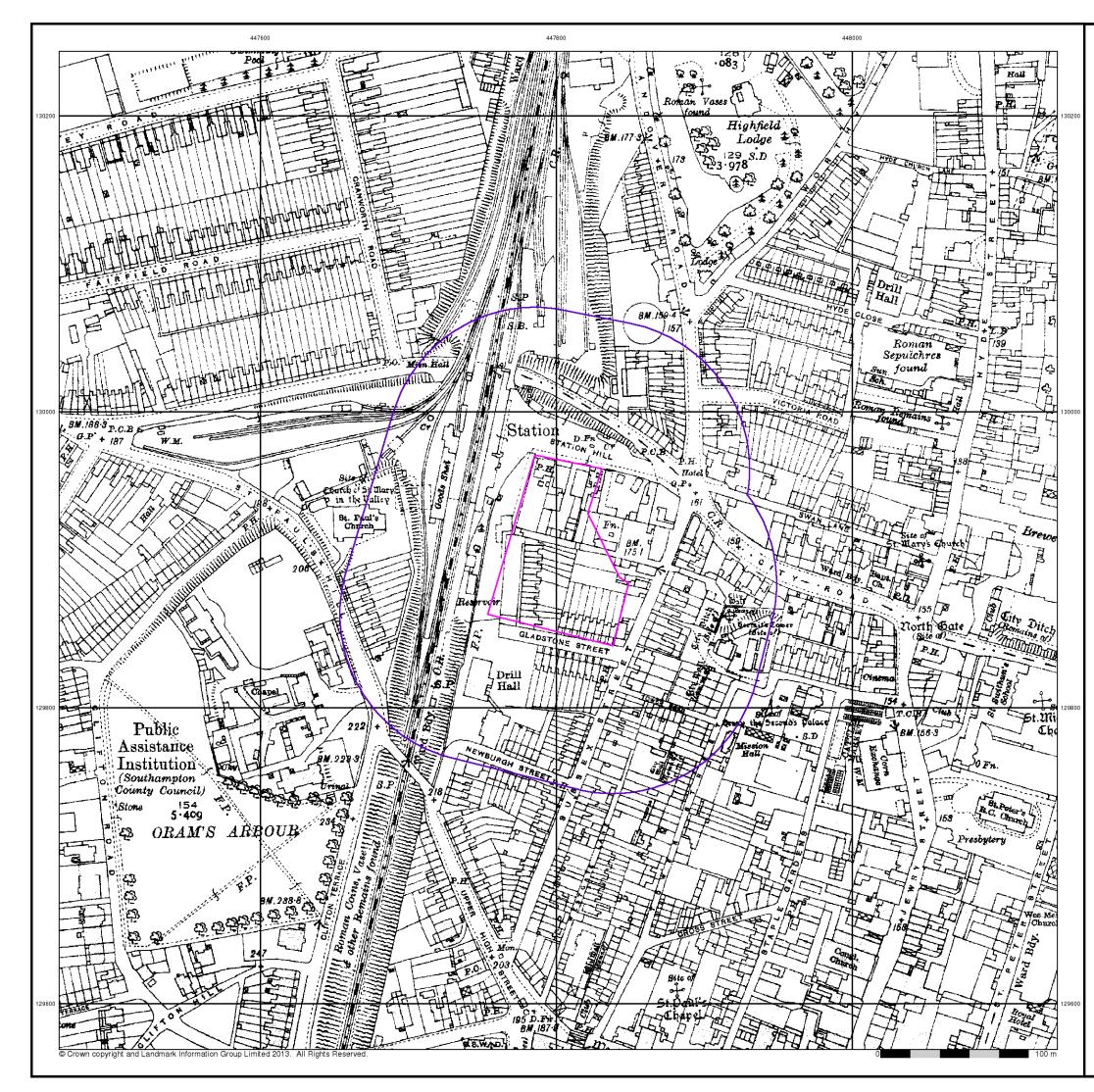
Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

Order Number:	50116218_1_1
Customer Ref:	1308015.001
National Grid Reference:	447800, 129900
Slice:	A
Site Area (Ha):	0.77
Search Buffer (m):	100

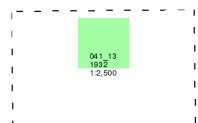
Site Details


Hampshire Register Office, Station Hill, WINCHESTER, Hampshire, SO23 8TJ

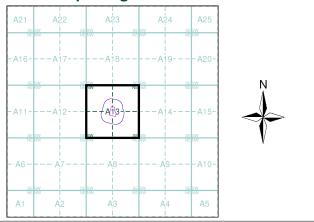
0844 844 9952

Tel: Fax:

Web



Published 1932


Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

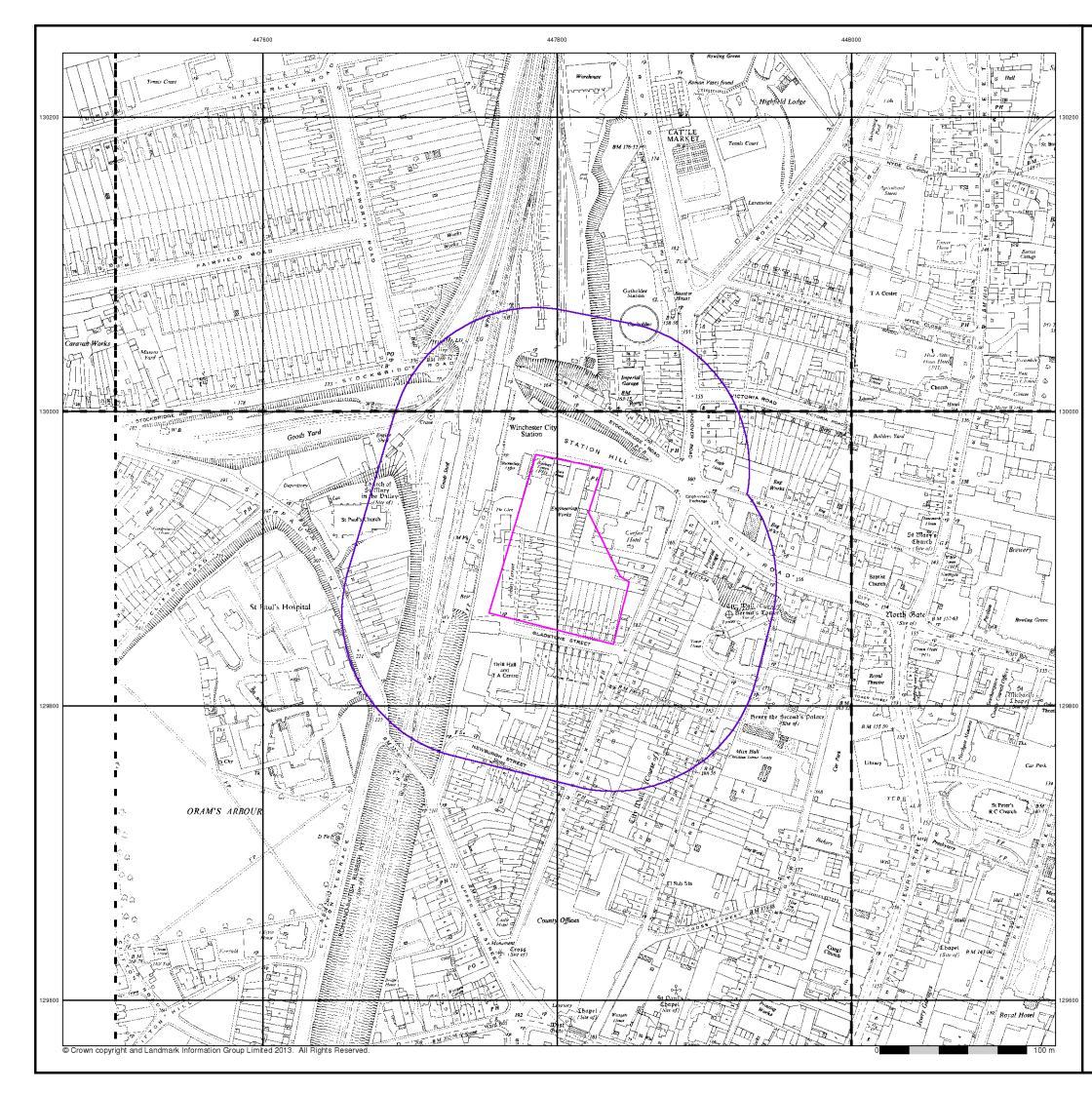
Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

Order Number:	50116218_1_1
Customer Ref:	1308015.001
National Grid Reference:	447800, 129900
Slice:	A
Site Area (Ha):	0.77
Search Buffer (m):	100

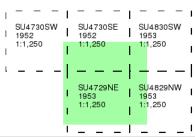
Site Details


Hampshire Register Office, Station Hill, WINCHESTER, Hampshire, SO23 8TJ

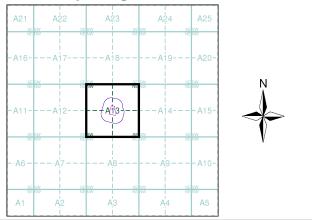
0844 844 9952

Tel: Fax:

Web



Ordnance Survey Plan Published 1952 - 1953


Source map scale - 1:1,250

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

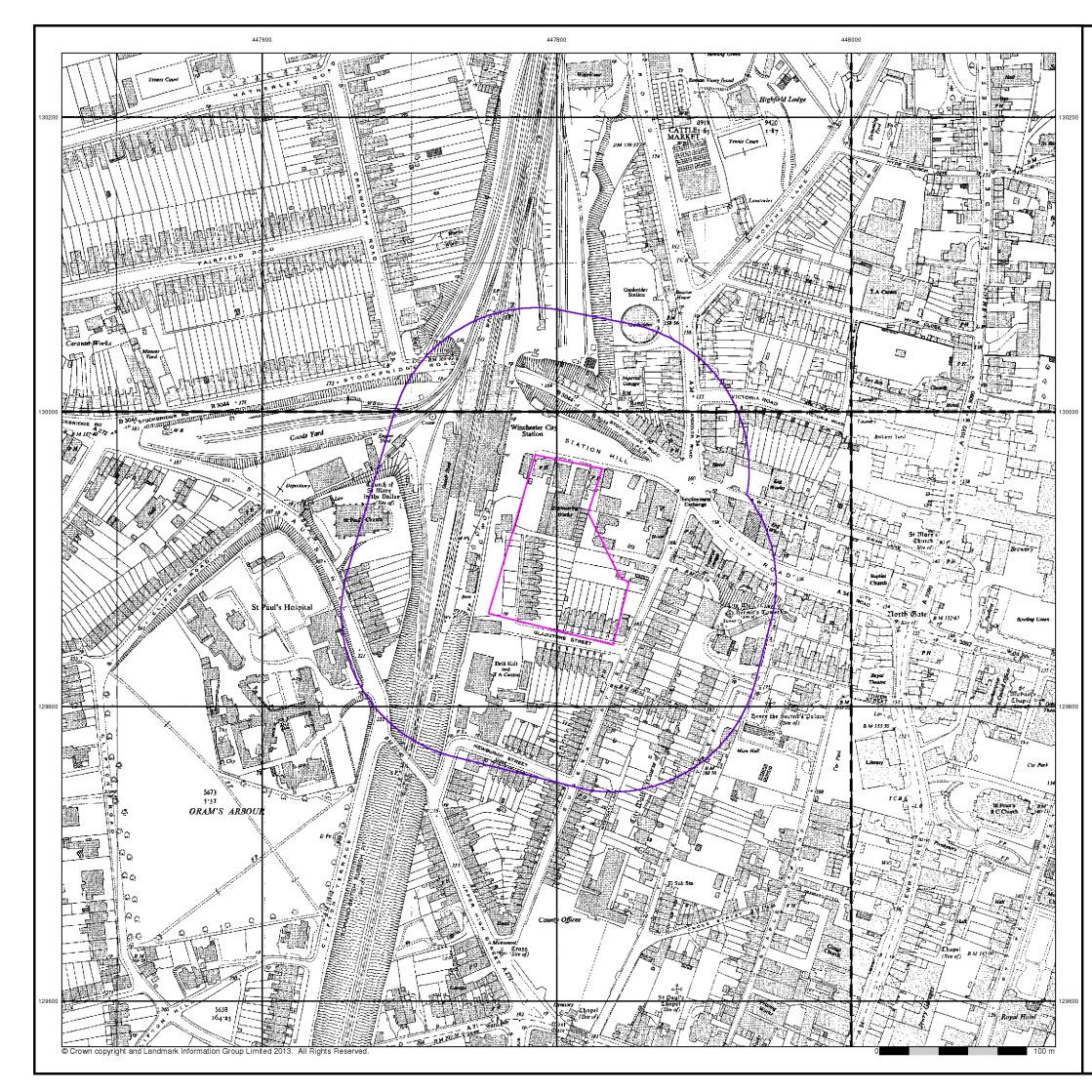
Historical Map - Segment A13

Order Details

Order Number:	50116218_1_1
Customer Ref:	1308015.001
National Grid Reference:	447800, 129900
Slice:	A
Site Area (Ha):	0.77
Search Buffer (m):	100

Site Details

Hampshire Register Office, Station Hill, WINCHESTER, Hampshire, SO23 8TJ

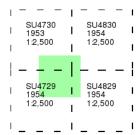

0844 844 9952

Tel: Fax:

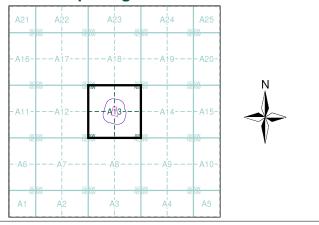
Web:

0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v47.0 17-Oct-2013 Page 6 of 18



Ordnance Survey Plan


Published 1953 - 1954 Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered tor mapping urban areas and by 189 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

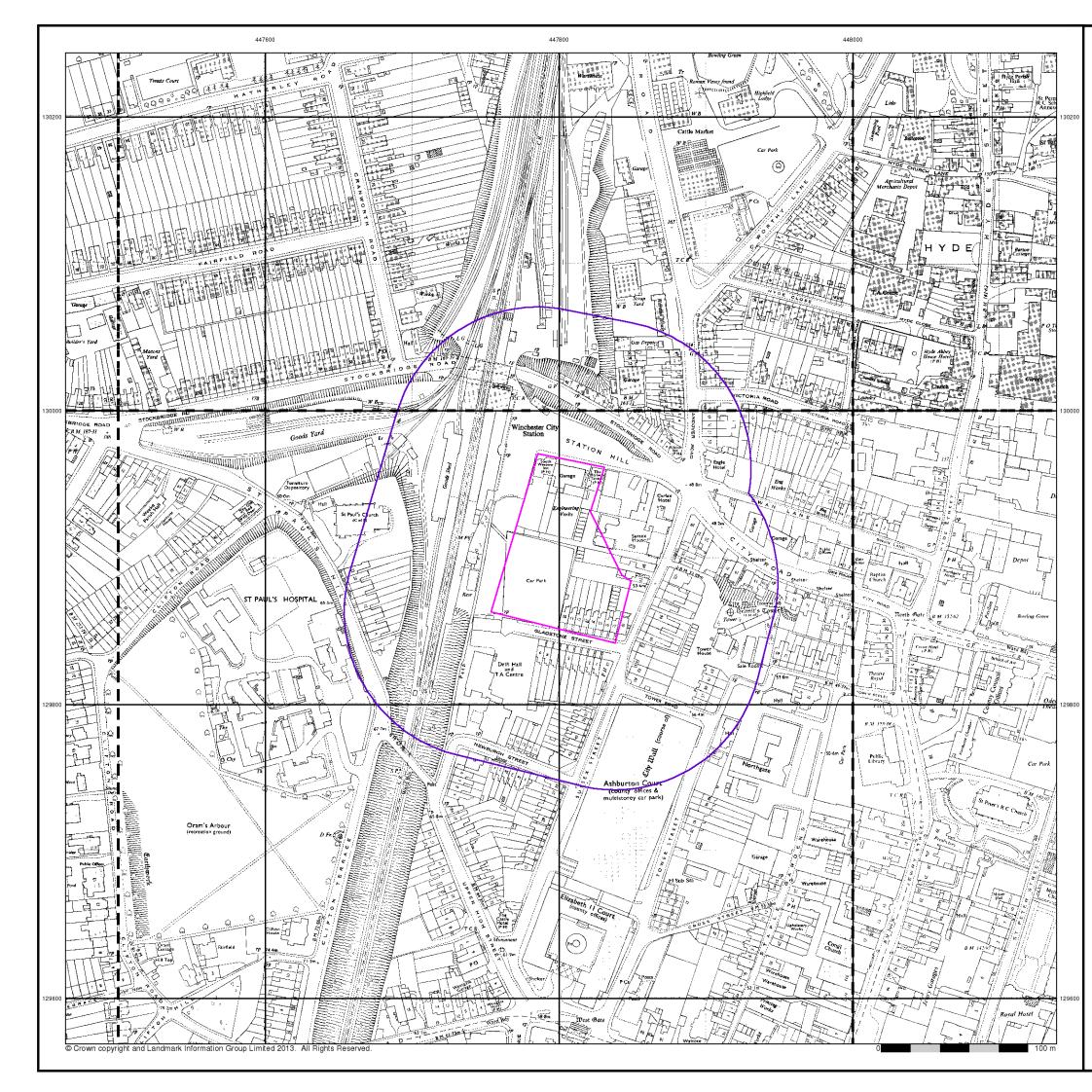
Historical Map - Segment A13

Order Details

Order Number:	50116218_1_1
Customer Ref:	1308015.001
National Grid Reference:	447800, 129900
Slice:	A
Site Area (Ha):	0.77
Search Buffer (m):	100

Site Details

Hampshire Register Office, Station Hill, WINCHESTER, Hampshire, SO23 8TJ

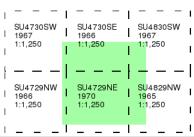

0844 844 9952 0844 844 9951

Tel: Fax:

Web:

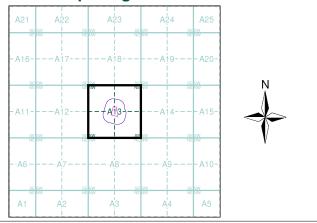
www.envirocheck.co.uk

A Landmark Information Group Service v47.0 17-Oct-2013 Page 7 of 18


Ordnance Survey Plan

Published 1965 - 1970

Source map scale - 1:1,250


The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

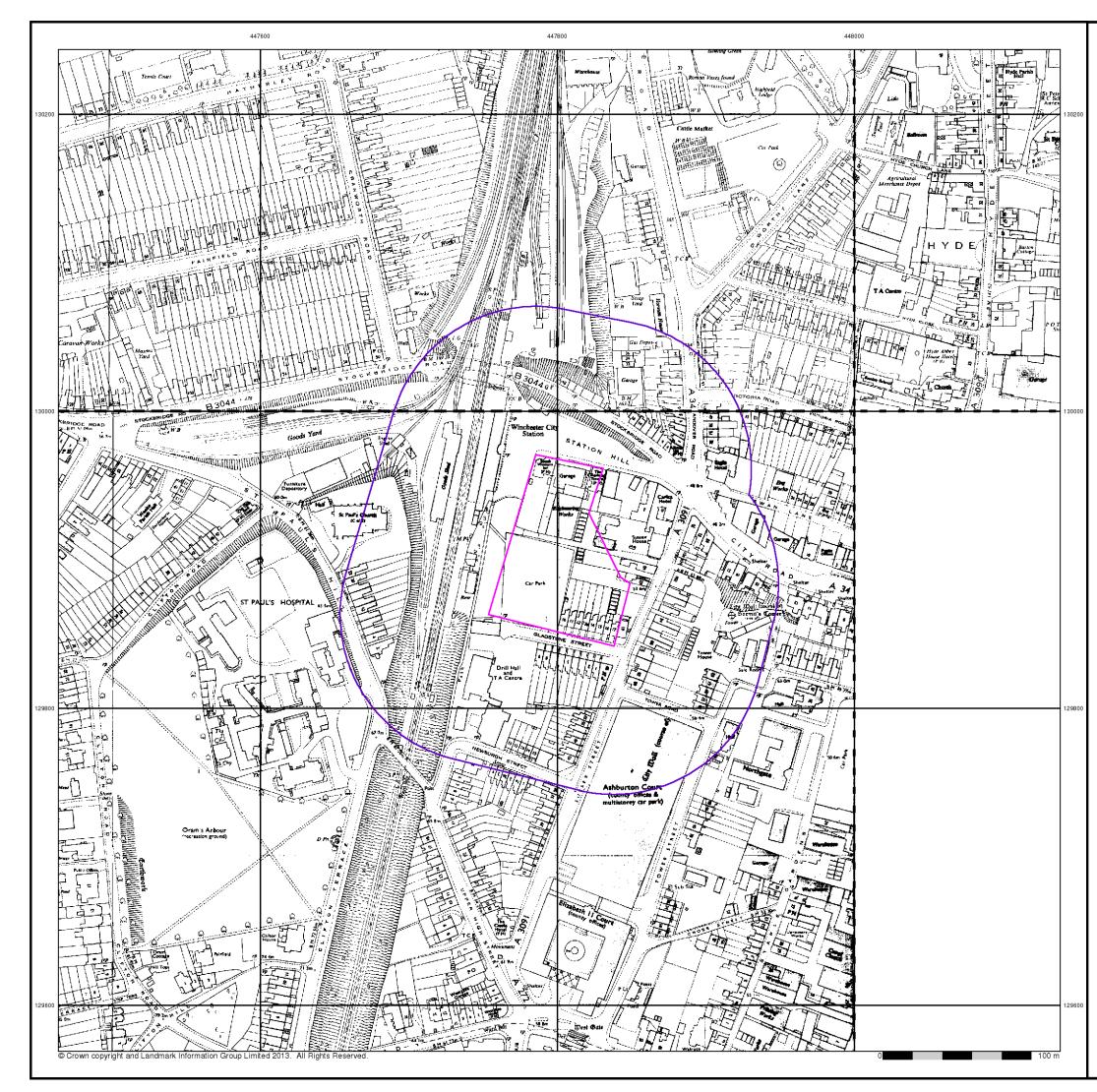
Historical Map - Segment A13

I _ _ _ T

Order Details

Order Number:	50116218_1_1
Customer Ref:	1308015.001
National Grid Reference:	447800, 129900
Slice:	A
Site Area (Ha):	0.77
Search Buffer (m):	100

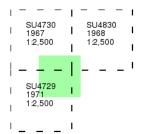
Site Details


Hampshire Register Office, Station Hill, WINCHESTER, Hampshire, SO23 8TJ

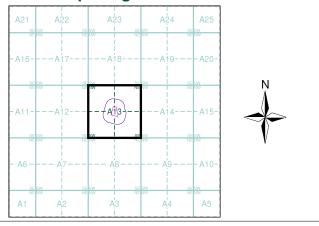
0844 844 9952

Tel: Fax:

Web:


Ordnance Survey Plan

Published 1967 - 1971


Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to mapping urban areas and by rose it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

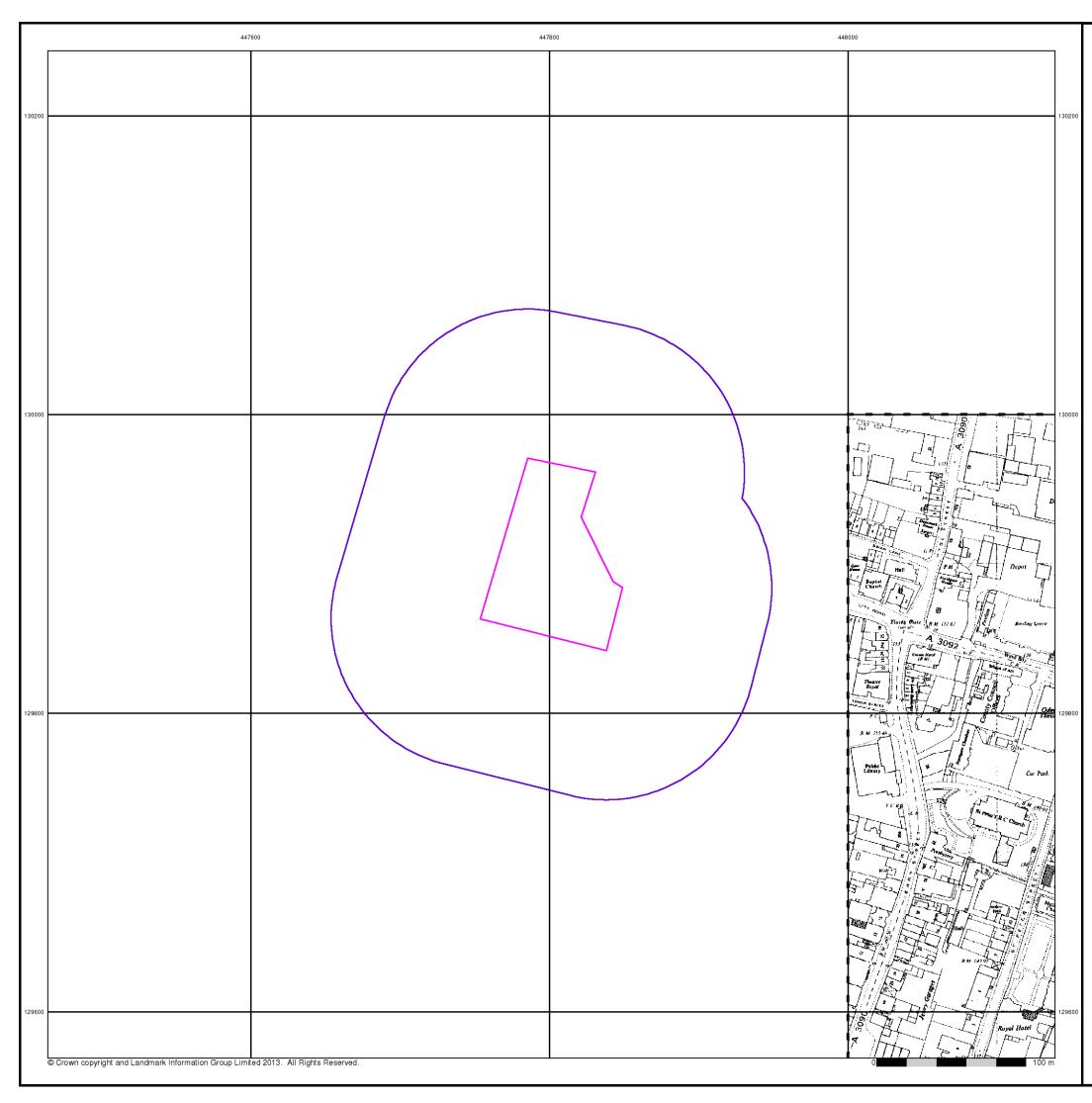
Historical Map - Segment A13

Order Details

Order Number:	50116218_1_1
Customer Ref:	1308015.001
National Grid Reference:	447800, 129900
Slice:	A
Site Area (Ha):	0.77
Search Buffer (m):	100

Site Details

Hampshire Register Office, Station Hill, WINCHESTER, Hampshire, SO23 8TJ

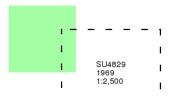


Tel: Fax:

Web:

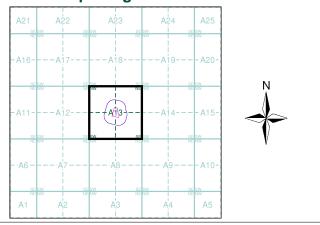
0844 844 9952 0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v47.0 17-Oct-2013 Page 9 of 18


Ordnance Survey Plan

Published 1969

Source map scale - 1:2,500


The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

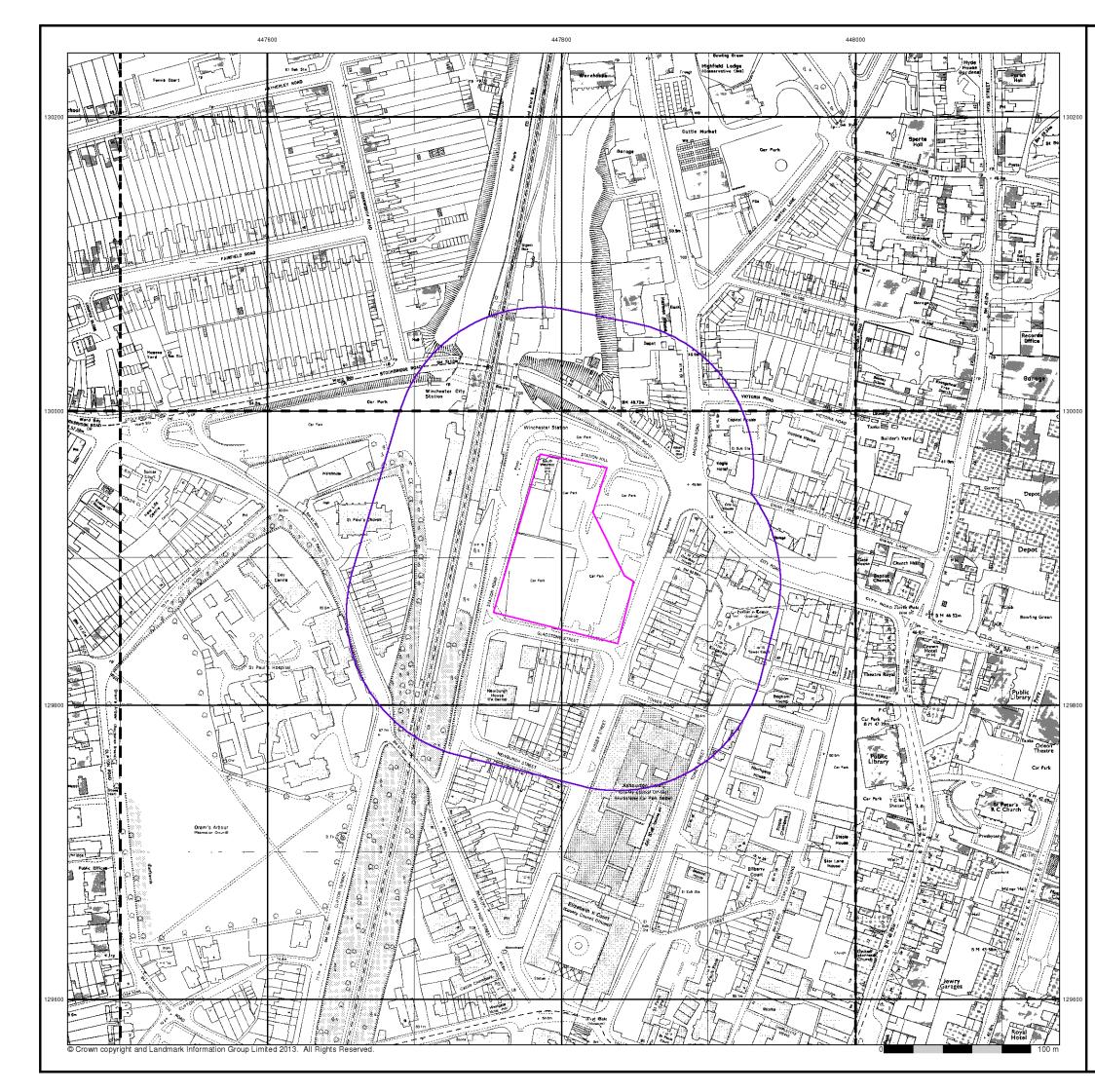
Map Name(s) and Date(s)

Historical Map - Segment A13

- '

Order Details

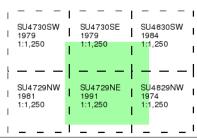
Order Number:	50116218_1_1
Customer Ref:	1308015.001
National Grid Reference:	447800, 129900
Slice:	A
Site Area (Ha):	0.77
Search Buffer (m):	100


Site Details

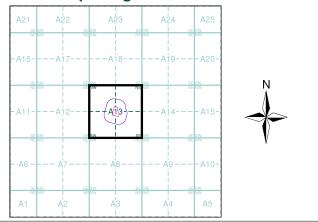
Hampshire Register Office, Station Hill, WINCHESTER, Hampshire, SO23 8TJ

Tel: Fax:

Web:


Ordnance Survey Plan

Published 1974 - 1991


Source map scale - 1:1,250

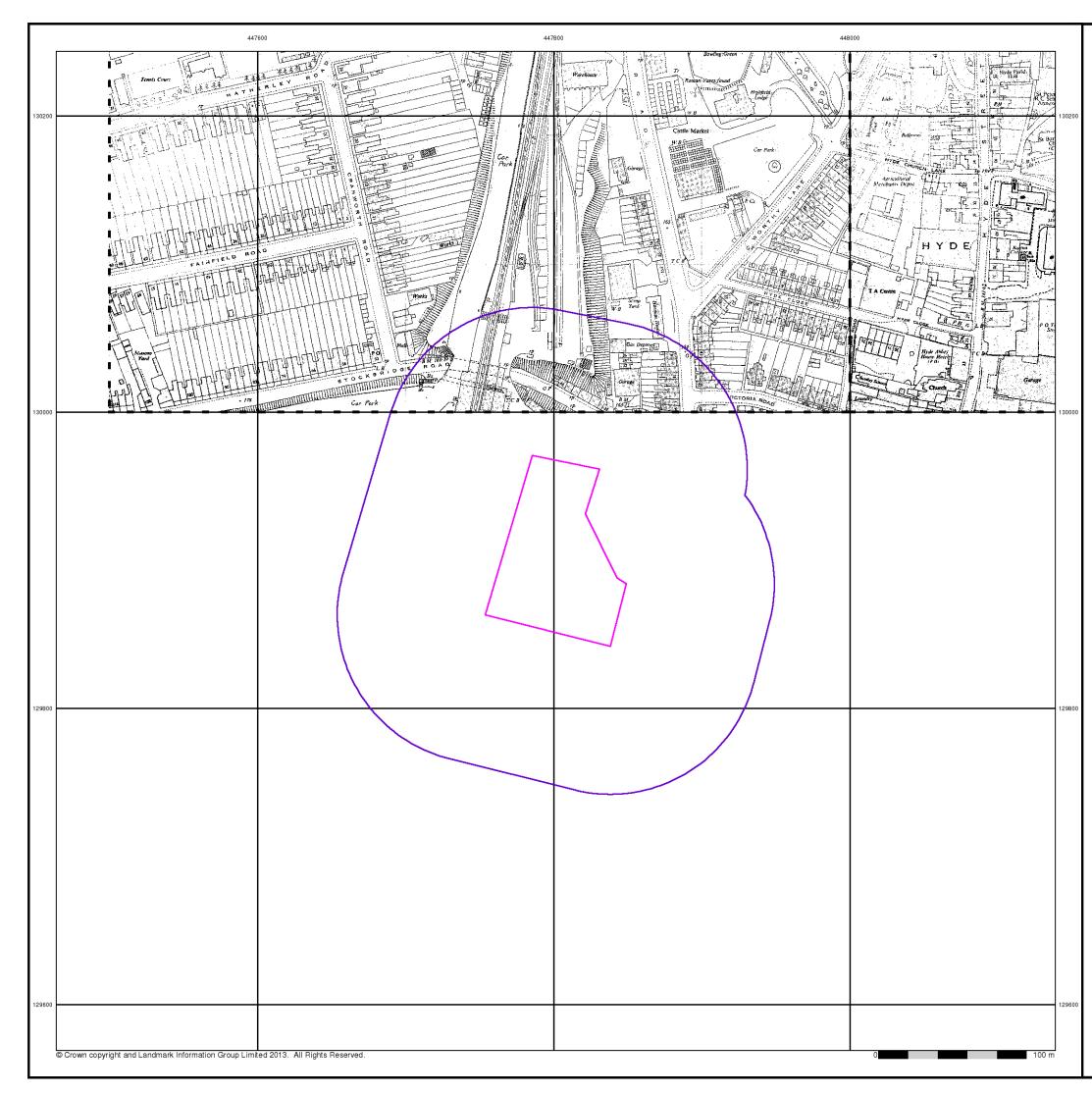
The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered tor mapping urban areas and by 189 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

Order Number:	50116218_1_1
Customer Ref:	1308015.001
National Grid Reference:	447800, 129900
Slice:	A
Site Area (Ha):	0.77
Search Buffer (m):	100


Site Details

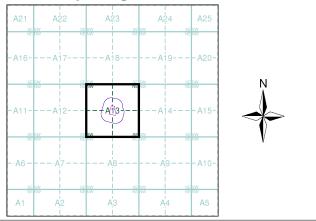
Hampshire Register Office, Station Hill, WINCHESTER, Hampshire, SO23 8TJ

Tel: Fax:

Web:

TWEEDIE EVANS CONSULTING Supply of Unpublished Survey Information

Published 1975


Source map scale - 1:1,250

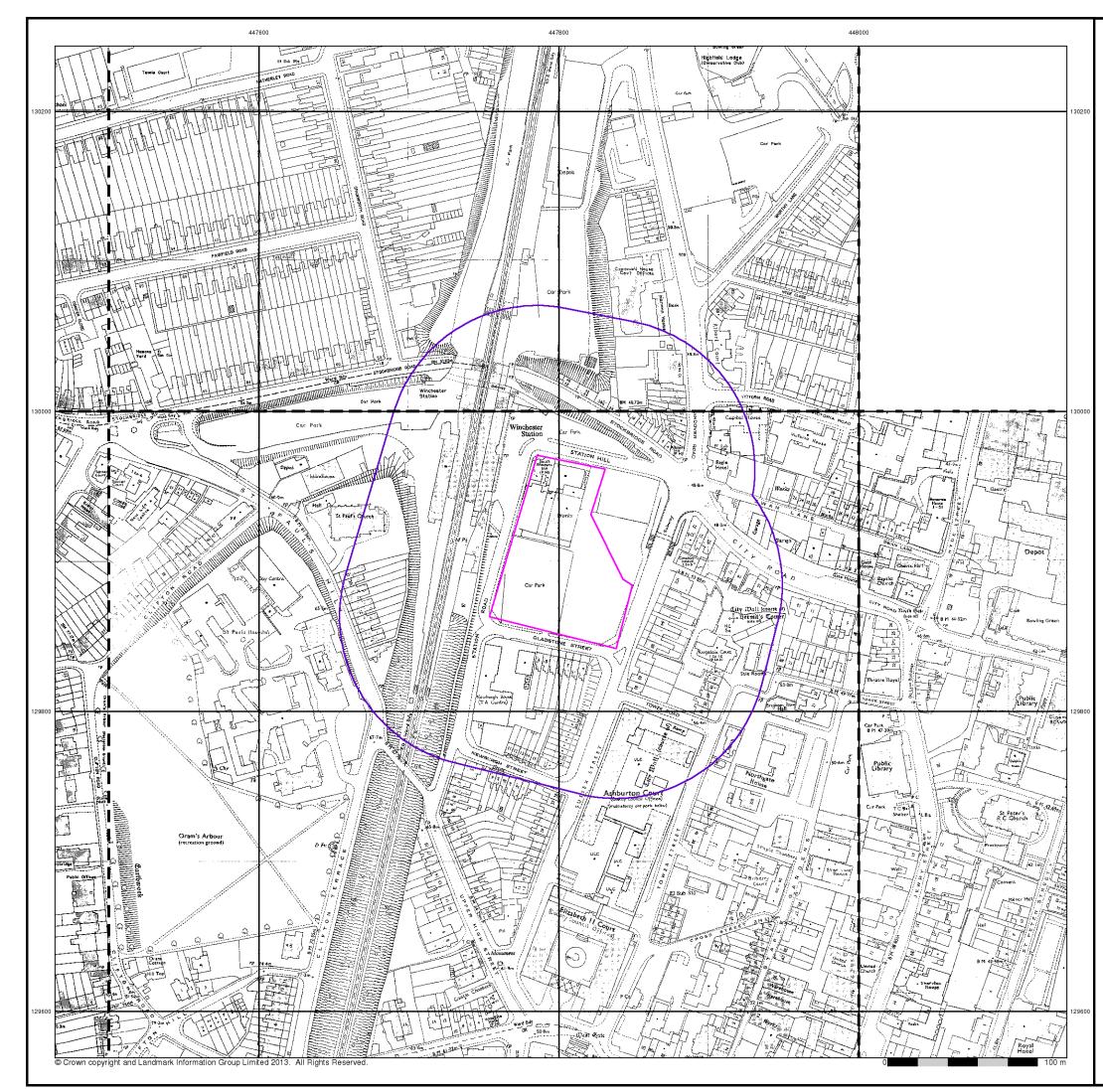
SUSI maps (Supply of Unpublished Survey Information) were produced between 1972 and 1977, mainly for internal use at Ordnance Survey. These were more of a `work-in-progress' plan as they showed updates of individual areas on a map. These maps were unpublished, and they do not represent a single moment in time. They were produced at both 1:2,500 and 1:1,250 scales.

Map Name(s) and Date(s)

	. – – – _–
SU4730SE 1975	SU4830SW 1975
1:1,250	1:1,250

Historical Map - Segment A13

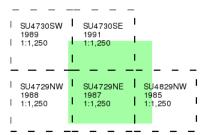
Order Details


Order Number:	50116218_1_1
Customer Ref:	1308015.001
National Grid Reference:	447800, 129900
Slice:	A
Site Area (Ha):	0.77
Search Buffer (m):	100

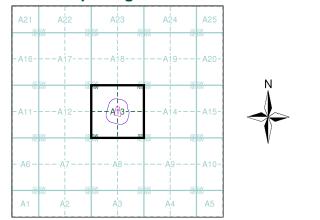
Site Details

Hampshire Register Office, Station Hill, WINCHESTER, Hampshire, SO23 8TJ

Tel: Fax: Web:


TWEEDIE EVANS CONSULTING Additional SIMs

Published 1985 - 1991


Source map scale - 1:1,250

The SIM cards (Ordnance Survey's `Survey of Information on Microfilm') are further, minor editions of mapping which were produced and published in between the main editions as an area was updated. They date from 1947 to 1994, and contain detailed information on buildings, roads and land-use. These maps were produced at both 1:2,500 and 1:1,250 scales.

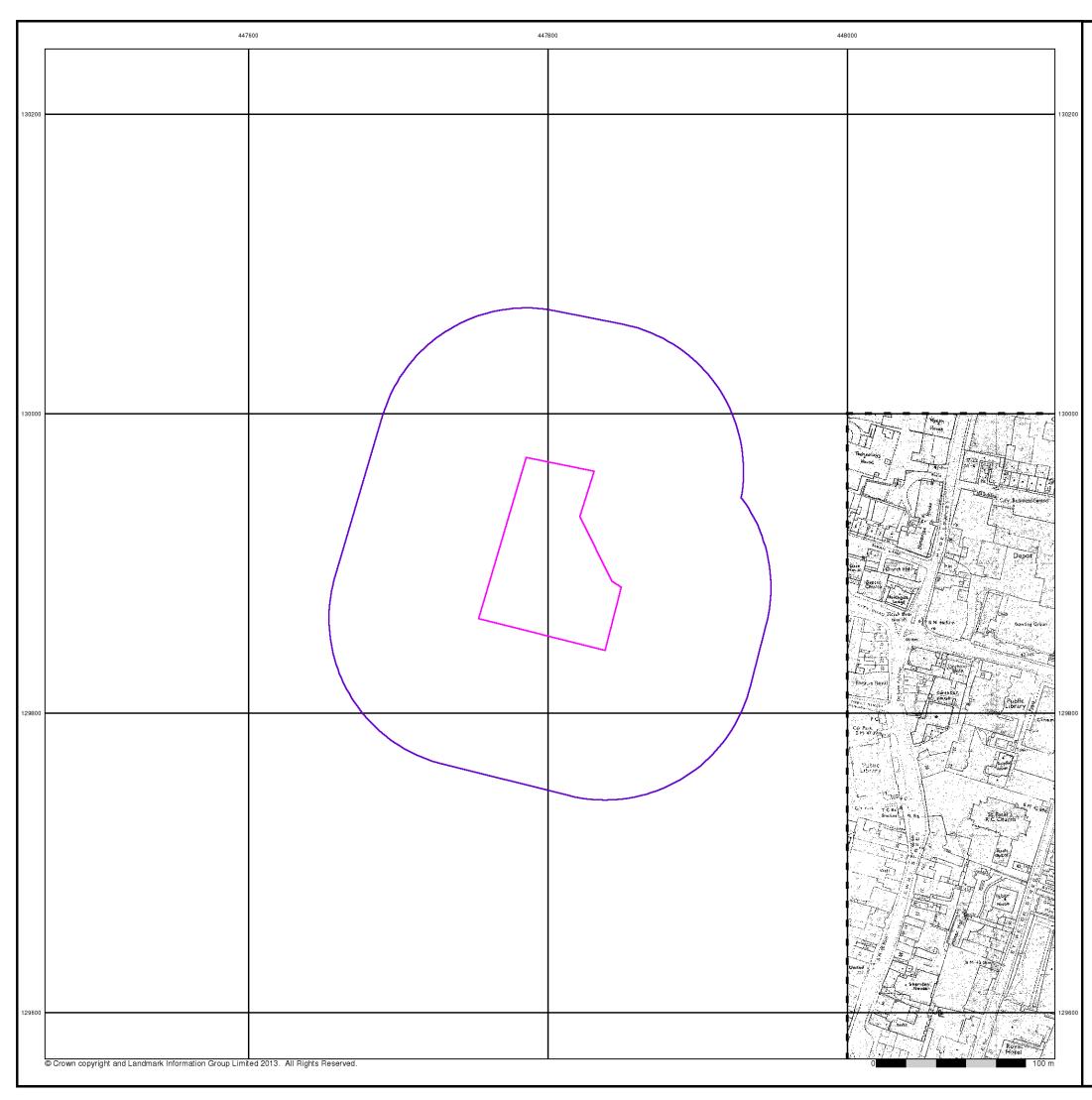
Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

Order Number:	50116218_1_1
Customer Ref:	1308015.001
National Grid Reference:	447800, 129900
Slice:	A
Site Area (Ha):	0.77
Search Buffer (m):	100

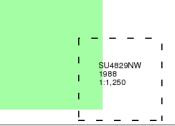
Site Details


Hampshire Register Office, Station Hill, WINCHESTER, Hampshire, SO23 8TJ

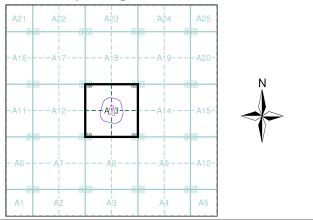
0844 844 9952

Tel: Fax:

Web:


TWEEDIE EVANS CONSULTING Additional SIMs

Published 1988


Source map scale - 1:1,250

The SIM cards (Ordnance Survey's 'Survey of Information on Microfilm') are further, minor editions of mapping which were produced and published in between the main editions as an area was updated. They date from 1947 to 1994, and contain detailed information on buildings, roads and land-use. These maps were produced at both 1:2,500 and 1:1,250 scales.

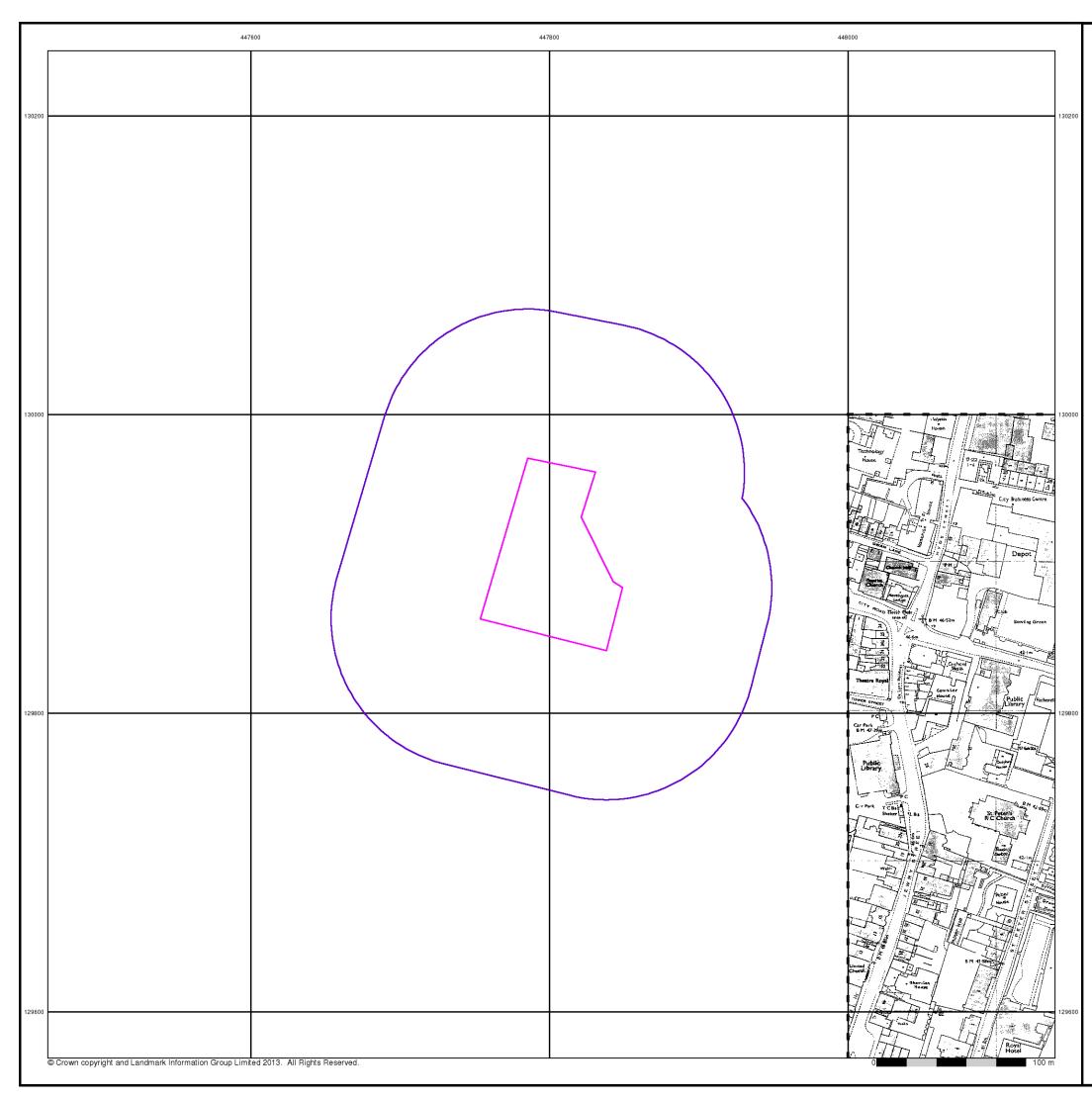
Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

Order Number:	50116218_1_1
Customer Ref:	1308015.001
National Grid Reference:	447800, 129900
Slice:	A
Site Area (Ha):	0.77
Search Buffer (m):	100

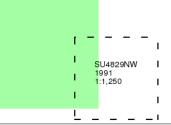
Site Details


Hampshire Register Office, Station Hill, WINCHESTER, Hampshire, SO23 8TJ

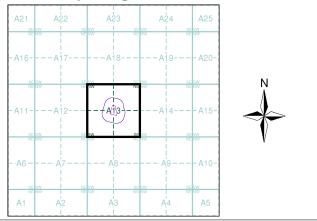
0844 844 9952 0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v47.0 17-Oct-2013 Page 14 of 18

Tel: Fax:


TWEEDIE EVANS CONSULTING Additional SIMs

Published 1991


Source map scale - 1:1,250

The SIM cards (Ordnance Survey's 'Survey of Information on Microfilm') are further, minor editions of mapping which were produced and published in between the main editions as an area was updated. They date from 1947 to 1994, and contain detailed information on buildings, roads and land-use. These maps were produced at both 1:2,500 and 1:1,250 scales.

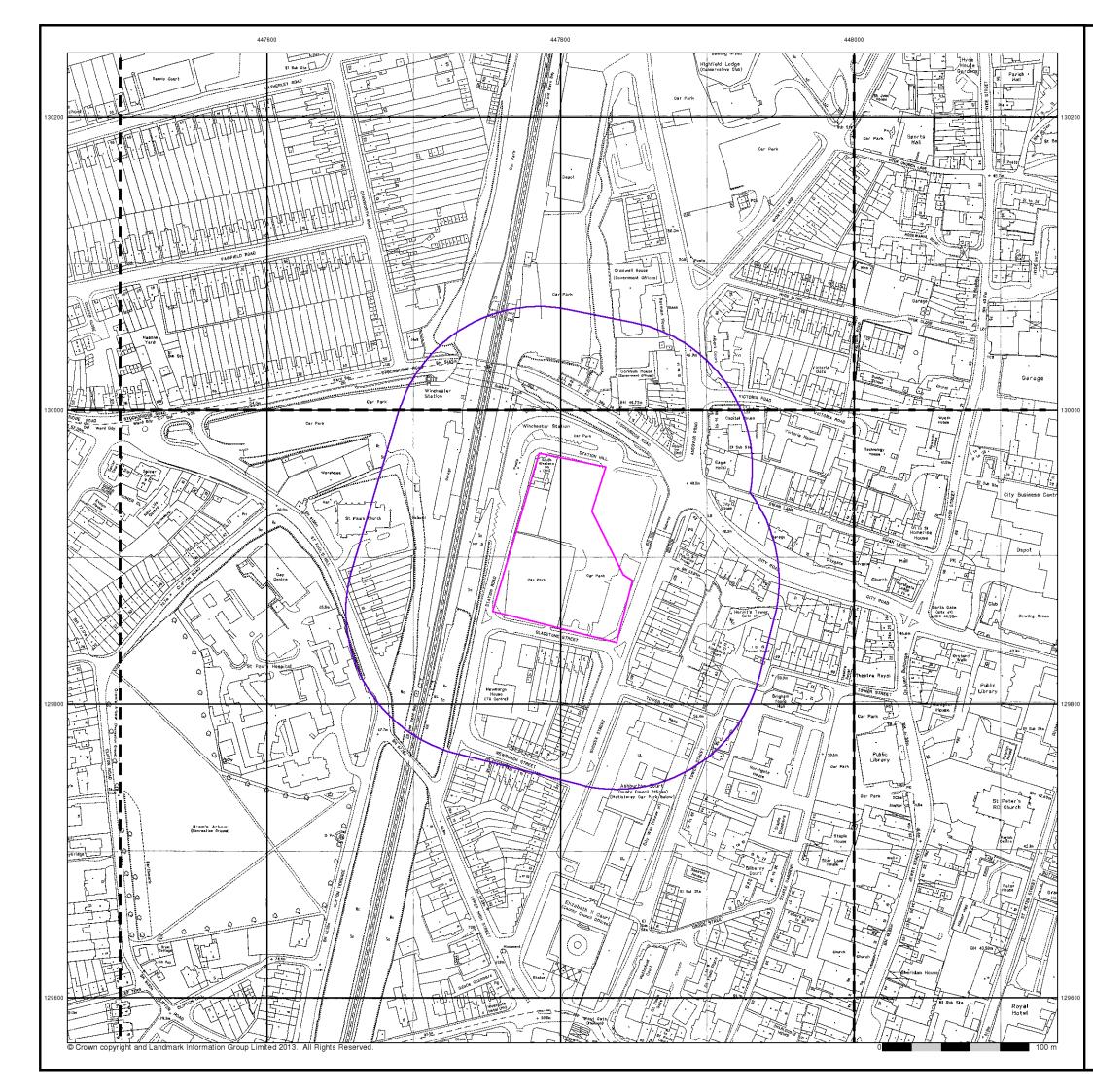
Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

Order Number:	50116218_1_1
Customer Ref:	1308015.001
National Grid Reference:	447800, 129900
Slice:	A
Site Area (Ha):	0.77
Search Buffer (m):	100

Site Details


Hampshire Register Office, Station Hill, WINCHESTER, Hampshire, SO23 8TJ

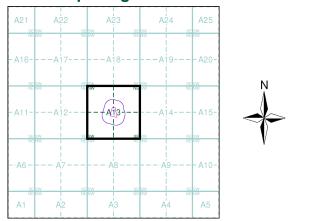
0844 844 9952 0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v47.0 17-Oct-2013 Page 15 of 18

Tel: Fax:

TWEEDIE EVANS CONSULTING Large-Scale National Grid Data

Published 1993


Source map scale - 1:1,250

'Large Scale National Grid Data' superseded SIM cards (Ordnance Survey's 'Survey of Information on Microfilm') in 1992, and continued to be produced until 1999. These maps were the fore-runners of digital mapping and so provide detailed information on houses and roads, but tend to show less topographic features such as vegetation. These maps were produced at both 1:2,500 and 1:1,250 scales.

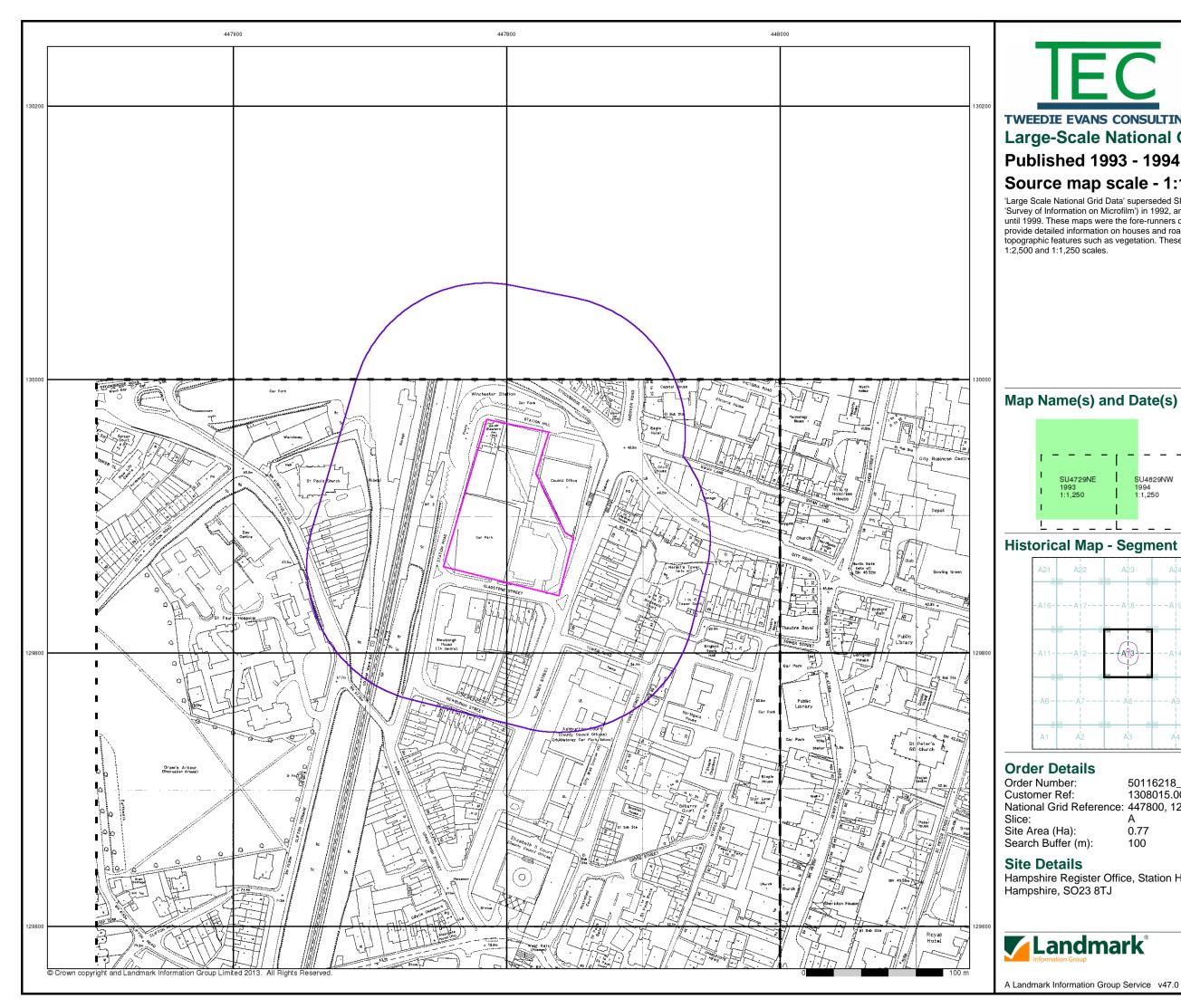
Map Name(s) and Date(s)

			_
SU4730SW	SU4730SE	SU4830SW	I
1993 1:1,250	1993 1:1,250	1993 1:1,250	I
	<u> </u>		1
SU4729NW	I _{SU4729NE}	SU4829NW	I
1993 1:1,250	1993 1 1:1,250	1993 1:1,250	I
I	1		I
			-

Historical Map - Segment A13

Order Details

Order Number:	50116218_1_1
Customer Ref:	1308015.001
National Grid Reference:	447800, 129900
Slice:	A
Site Area (Ha):	0.77
Search Buffer (m):	100


Site Details

Hampshire Register Office, Station Hill, WINCHESTER, Hampshire, SO23 8TJ

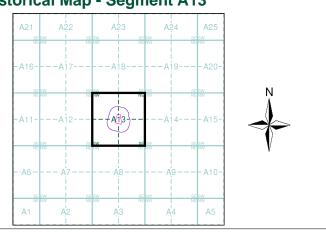
Tel: Fax:

Web:

TWEEDIE EVANS CONSULTING Large-Scale National Grid Data

Published 1993 - 1994

Source map scale - 1:1,250


'Large Scale National Grid Data' superseded SIM cards (Ordnance Survey's 'Survey of Information on Microfilm') in 1992, and continued to be produced until 1999. These maps were the fore-runners of digital mapping and so provide detailed information on houses and roads, but tend to show less topographic features such as vegetation. These maps were produced at both 1:2,500 and 1:1,250 scales.

1994 1:1,250

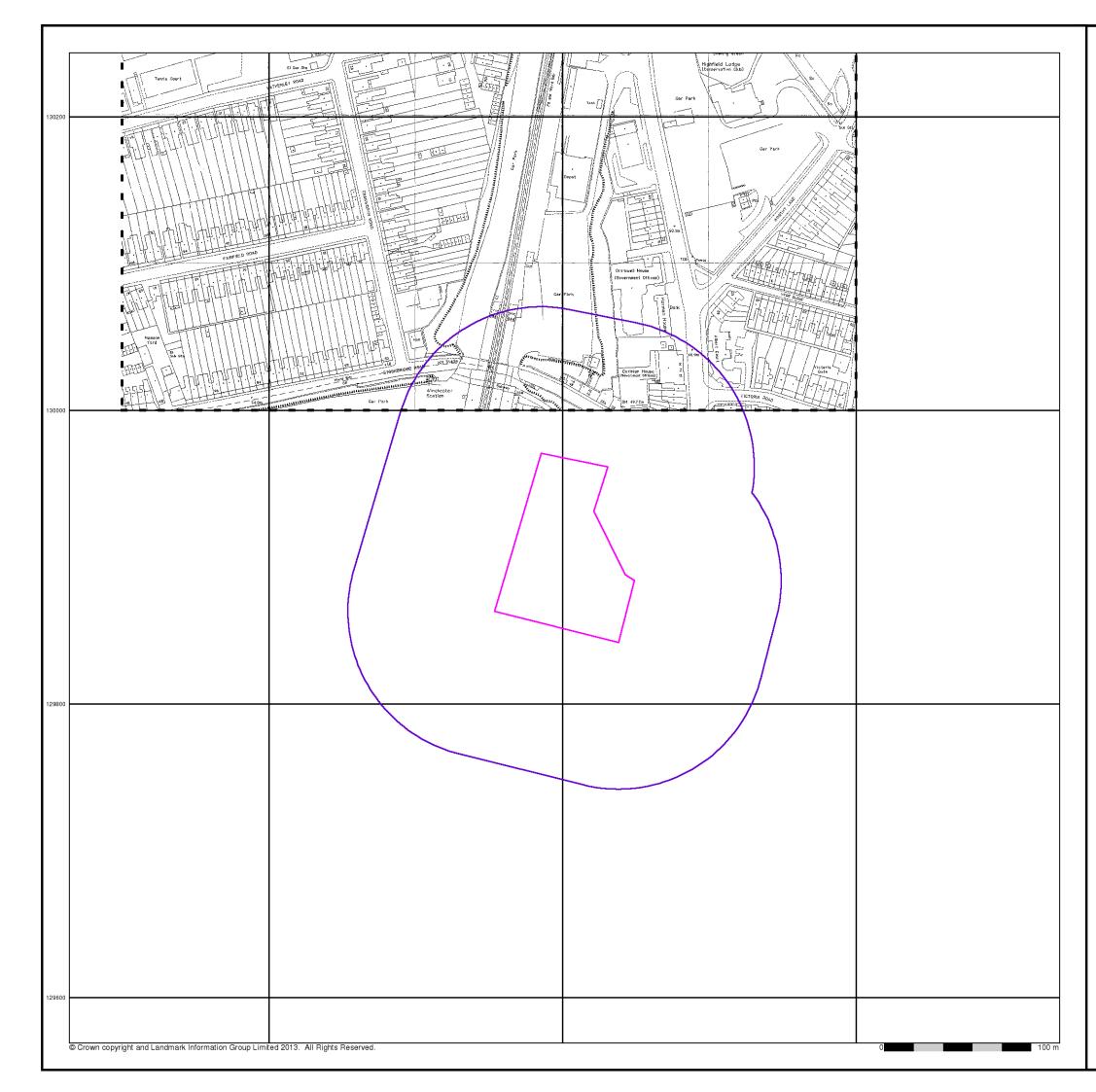
_ _ _ _L _ _ 1 Historical Map - Segment A13

1993 1:1,250

Order Details

Order Number:	50116218_1_1
Customer Ref:	1308015.001
National Grid Reference:	447800, 129900
Slice:	Α
Site Area (Ha):	0.77
Search Buffer (m):	100

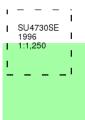
Site Details


Hampshire Register Office, Station Hill, WINCHESTER, Hampshire, SO23 8TJ

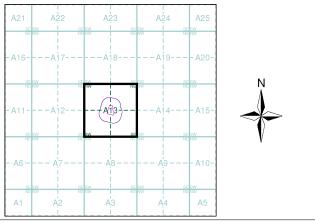
0844 844 9952

Tel: Fax:

Web:


TWEEDIE EVANS CONSULTING Large-Scale National Grid Data

Published 1996


Source map scale - 1:1,250

'Large Scale National Grid Data' superseded SIM cards (Ordnance Survey's 'Survey of Information on Microfilm') in 1992, and continued to be produced until 1999. These maps were the fore-runners of digital mapping and so provide detailed information on houses and roads, but tend to show less topographic features such as vegetation. These maps were produced at both 1:2,500 and 1:1,250 scales.

Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

Order Number:	50116218_1_1
Customer Ref:	1308015.001
National Grid Reference:	447800, 129900
Slice:	A
Site Area (Ha):	0.77
Search Buffer (m):	100

Site Details

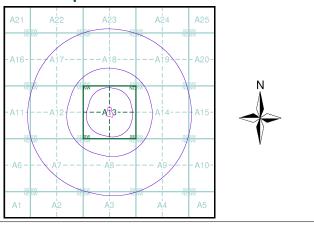
Hampshire Register Office, Station Hill, WINCHESTER, Hampshire, SO23 8TJ

0844 844 9952

Tel: Fax:

Web:

Historical Mapping Legends


Ordnance Survey County Series 1:10,560			0	Ordnance Survey Plan 1:10,000			1:10,000 Raster Mapping			
Grav Pit	vel Sand Pit	Other Manuson Pits	En common	 Chalk Pit, Clay Pit or Quarry 		🤌 Gravel Pit		Gra∨el Pit		Refuse tip or slag heap
C Quar	rry Shingle	•••••• ••••••• Orchard		Sand Pit	, 	 Disused Pit or Quarry 		Rock		Rock (scattered)
****** ********* ********** **********	ers	Marsh		Refuse or / Slag Heap		Lake, Loch or Pond		Boulders	0 0 0 0	Boulders (scattered)
4 2 5 C		197 197 297 197 197 197 197 197 197		Dunes		Boulders		Shingle	Mud	Mud
Mixed Wood	d Deciduous	Brushwood	* * *	Coniferous Trees	444	Non-Coniferous Trees	Sand	Sand		Sand Pit
				Orchard Ωo_	Scrub	\Yµ Coppice	THHH	Slopes		Top of cliff
		anna ar an anna ar anna ar anna anna an	า า า	Bracken		、,, Rough		General detail		Underground detail Narrow gauge
Fir	Furze	Rough Pasture	ar I			Grassland		- O∨erhead detail Multi-track	+++++++++++++++++++++++++++++++++++++++	railway Single track
	row denotes 🛛 🔺 w of water	Trigonometrical Station	<u></u>	Marsh 、、、Y///	Reeas	<u>→_ა</u> _ Saltings		railway County boundary		railway Ci∨il, parish or
•	te of Antiquities 🔹 🛧	Bench Mark		Direc Building	tion of Flow of	Water		(England only) District, Unitary,	•••••	community boundary
• Si	ump, Guide Post, gnal Post urface Level	Well, Spring, Boundary Post	83	Glasshouse	A CONTRACTOR	Sand		Metropolitan, London Borough boundary		Constituency boundary
Sketched	Instrum Contoui	200		Sloping Masonry	Pylon — — 🗆 — Pole	 Electricity Transmission Line 	۵ <i>۵</i> **	Area of wooded ∨egetation	۵۵ ۵۵	Non-coniferous trees
Main Roads	Fenced Minor R	Fenced			·-	-	ې م	Non-coniferous trees (scattered)	** **	Coniferous trees
	Un-Fenced	Un-Fenced	Cutting		ent		余 余	Coniferous trees (scattered)	Ģ	Positioned tree
	Sunken Road	Raised Road	Road ''' Under	Road Leve Over Cross	el Foot ing Bridge	•	4 4 4 4	Orchard	ж. Ж	Coppice or Osiers
and the second s	Road over Railway	Railway over River		+ + + + +		Siding, Tramway or Mineral Line → Narrow Gauge	សារីក សារីក	Rough Grassland	avillen avillen	Heath
	Railway over Road	Level Crossing		Geographical Co	unty		0n_ 0n_	Scrub	אַעַיר אַעַיר	Marsh, Salt Marsh or Reed
	Road over River or Canal	Road o∨er) Stream		Administrative Co or County of City Municipal Boroug	,	-	5	Water feature	<i>←</i> ←	Flow arrows
	Road o∨er Stream			Burgh or District	Council or County Cor	stituency	MHW(S)	Mean high water (springs)	MLW(S)	Mean low water (springs)
	County Boundary (Geogra	aphical)		Civil Parish		of boundaries occurs	+-	Telephone line (where shown)		Electricity transmission li
<u>-</u>	County & Ci∨il Parish Bou Administrati∨e County & C	-	,	Boundary Post or Stone	Pol Sta	Police Station	← BM 123.45 m	Bench mark	Δ	(with poles) Triangulation
 Co. Boro. Bdy.	County Borough Boundary	-	сн	Church Club House Fire Engine Station	PO PC PH	Post Office Public Convenience Public House	DIVI 1∠3.45 m	(where shown) Point feature (e.g. Guide Post	\boxtimes	station Pylon, flare sta
Co. Burgh Bdy.	County Burgh Boundary (Scotland)	FB Fn	Foot Bridge Fountain	SB Spr	Signal Box Spring	• 🖡 •	or Mile Stone) Site of (antiquity)		or lighting tow Glasshouse
y	Rural District Boundary		MP	Guide Post Mile Post Mile Stope	TCB TCP W	Telephone Call Box Telephone Call Post	- - -			Important
	Ci∨il Parish Boundary		MS	Mile Stone	W	Well		General Building		Building

TWEEDIE EVANS CONSULTING Historical Mapping & Photography included:

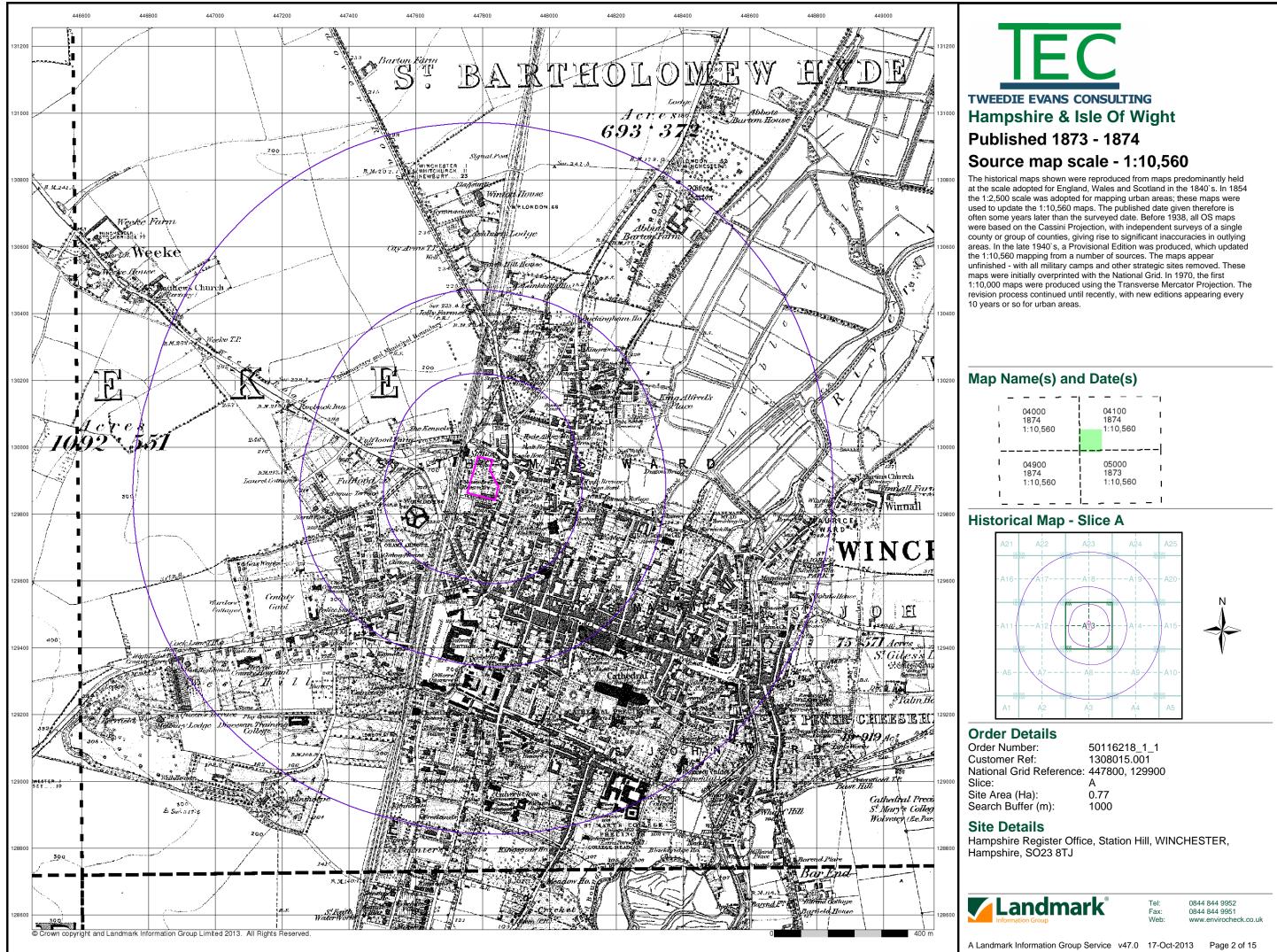
Mapping Type	Scale	Date	Pg
Hampshire & Isle Of Wight	1:10,560	1873 - 1874	2
Hampshire & Isle Of Wight	1:10,560	1897 - 1898	3
Hampshire & Isle Of Wight	1:10,560	1910 - 1911	4
Hampshire & Isle Of Wight	1:10,560	1930 - 1932	5
Hampshire & Isle Of Wight	1:10,560	1931 - 1932	6
Hampshire & Isle Of Wight	1:10,560	1938 - 1940	7
Historical Aerial Photography	1:10,560	1947	8
Ordnance Survey Plan	1:10,000	1962	9
Ordnance Survey Plan	1:10,000	1966 - 1968	10
Ordnance Survey Plan	1:10,000	1969	11
Ordnance Survey Plan	1:10,000	1977	12
Ordnance Survey Plan	1:10,000	1983 - 1989	13
Ordnance Survey Plan	1:10,000	1990	14
10K Raster Mapping	1:10,000	2013	15

Historical Map - Slice A

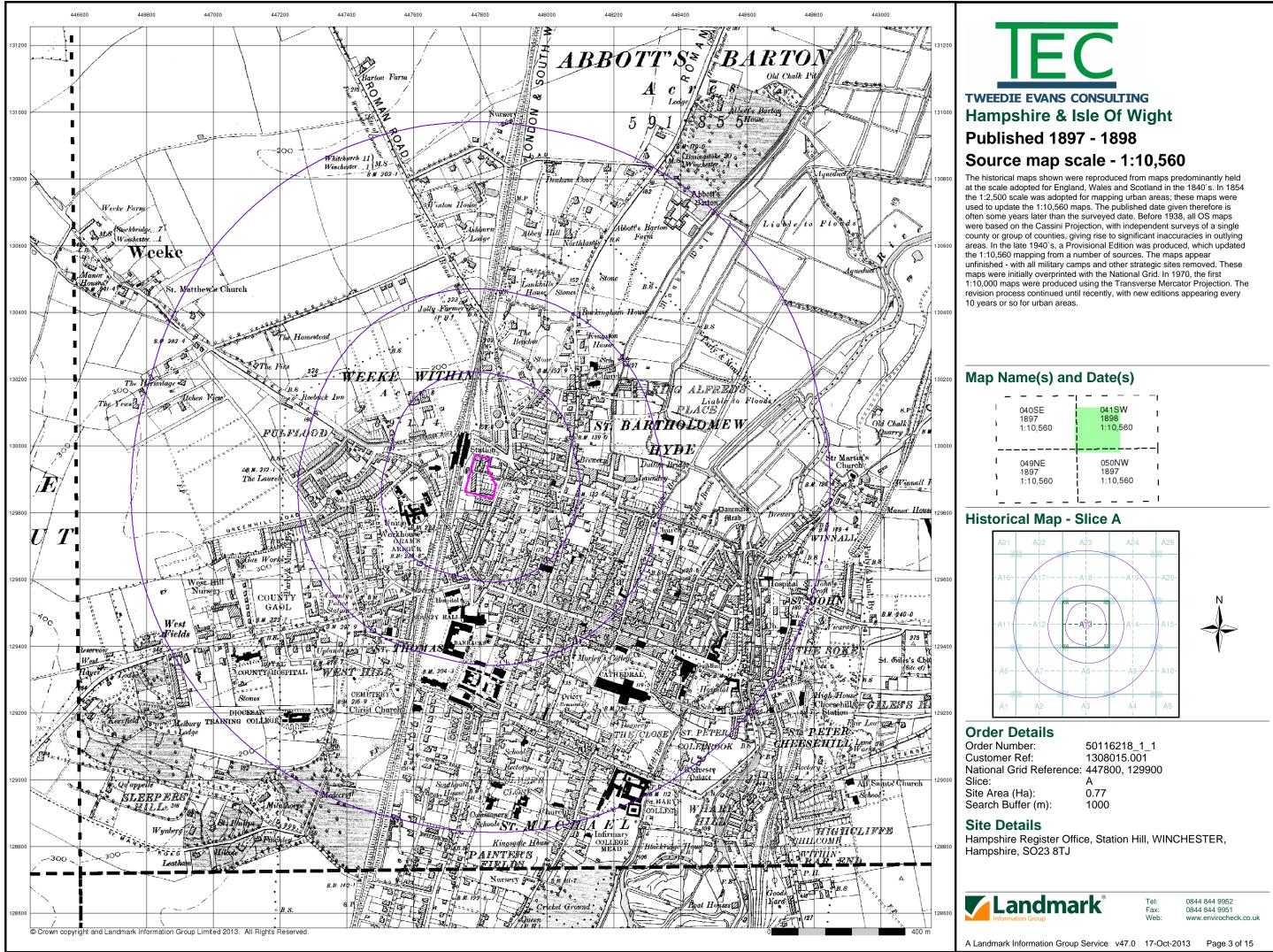
Order Details

Order Number: Customer Ref: 1308015.001 National Grid Reference: 447800, 129900 Slice: Site Area (Ha): Search Buffer (m):

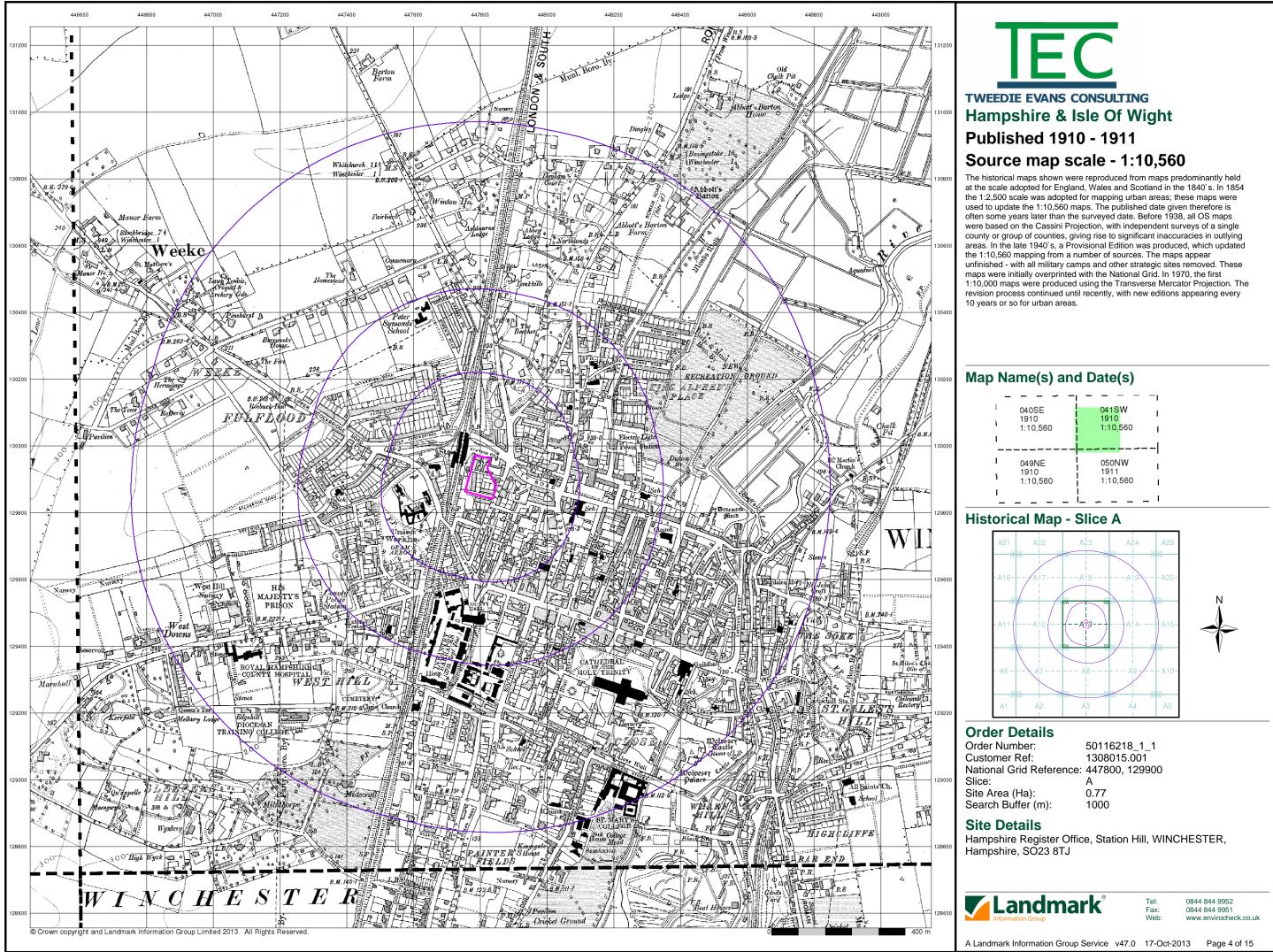
50116218_1_1 А 0.77 1000

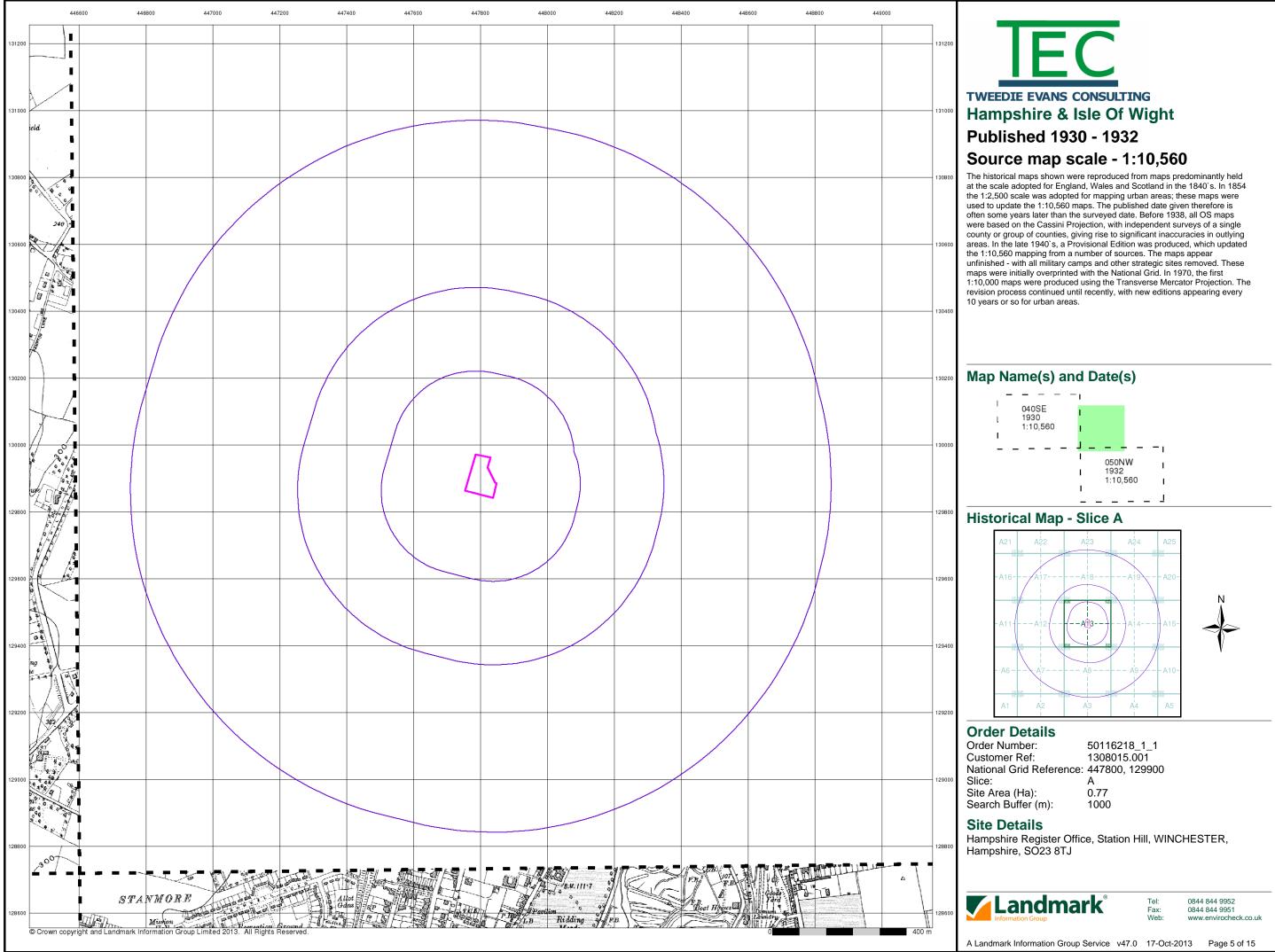

Site Details

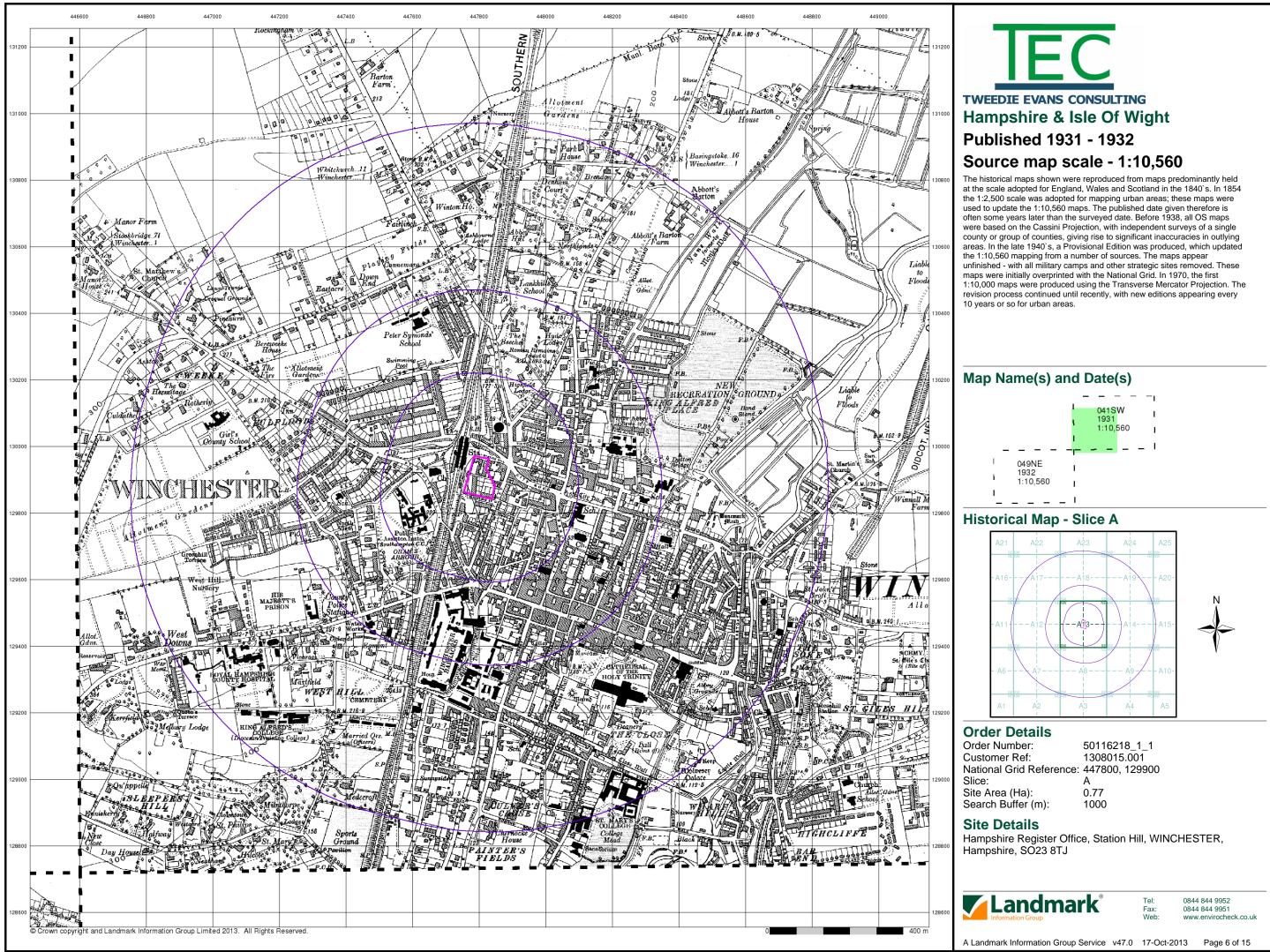
Hampshire Register Office, Station Hill, WINCHESTER, Hampshire, SO23 8TJ

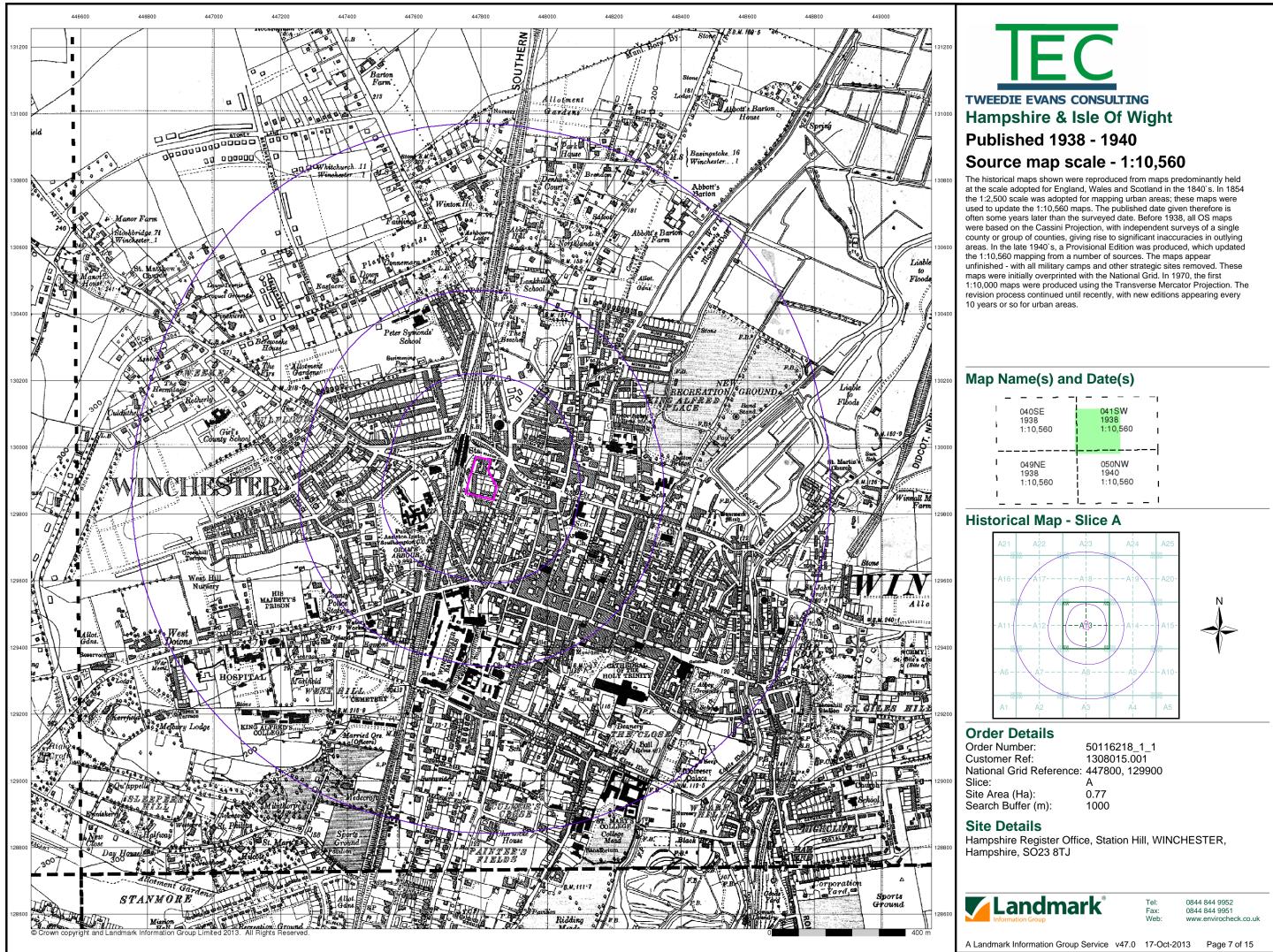


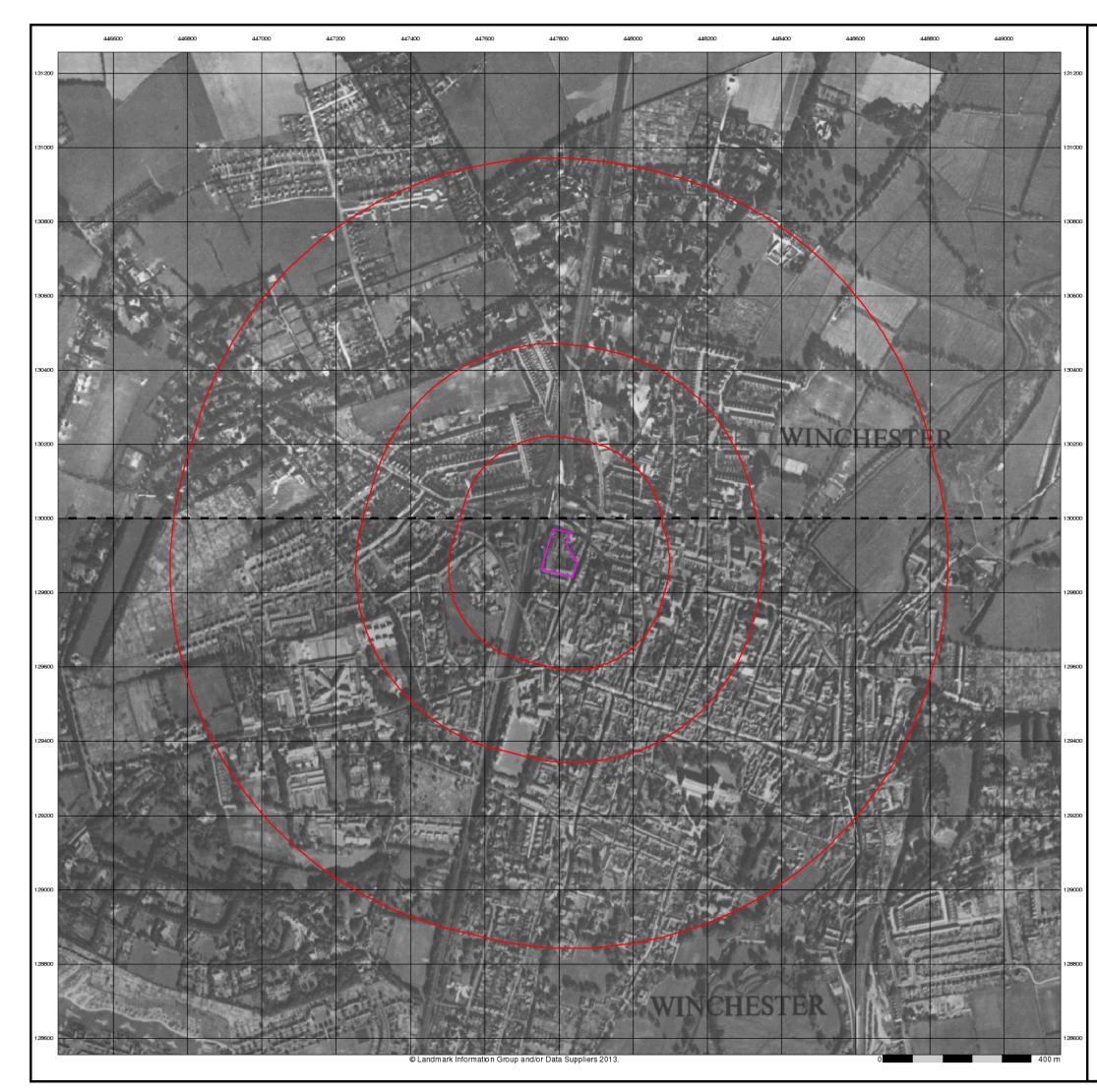
0844 844 9952 0844 844 9951 www.envirocheck.co.uk


Tel: Fax: Web:

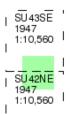




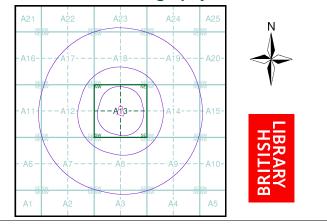




TWEEDIE EVANS CONSULTING Historical Aerial Photography


Published 1947

Source map scale - 1:10,560


The Historical Aerial Photos were produced by the Ordnance Survey at a scale of 1:1,250 and 1:10,560 from Air Force photography. They were produced between 1944 and 1951 as an interim measure, pending preparation of conventional mapping, due to post war resource shortages. New security measures in the 1950's meant that every photograph was rechecked for potentially unsafe information with security sites replaced by fake fields or clouds. The original editions were withdrawn and only later made available after a period of fifty years although due to the accuracy of the editing, without viewing both revisions it is not easy to spot the edits. Where available Landmark have included both revisions.

© Landmark Information Group and/or Data Suppliers 2010.

Map Name(s) and Date(s)

Historical Aerial Photography - Slice A

Order Details

 Order Number:
 50116218_1_1

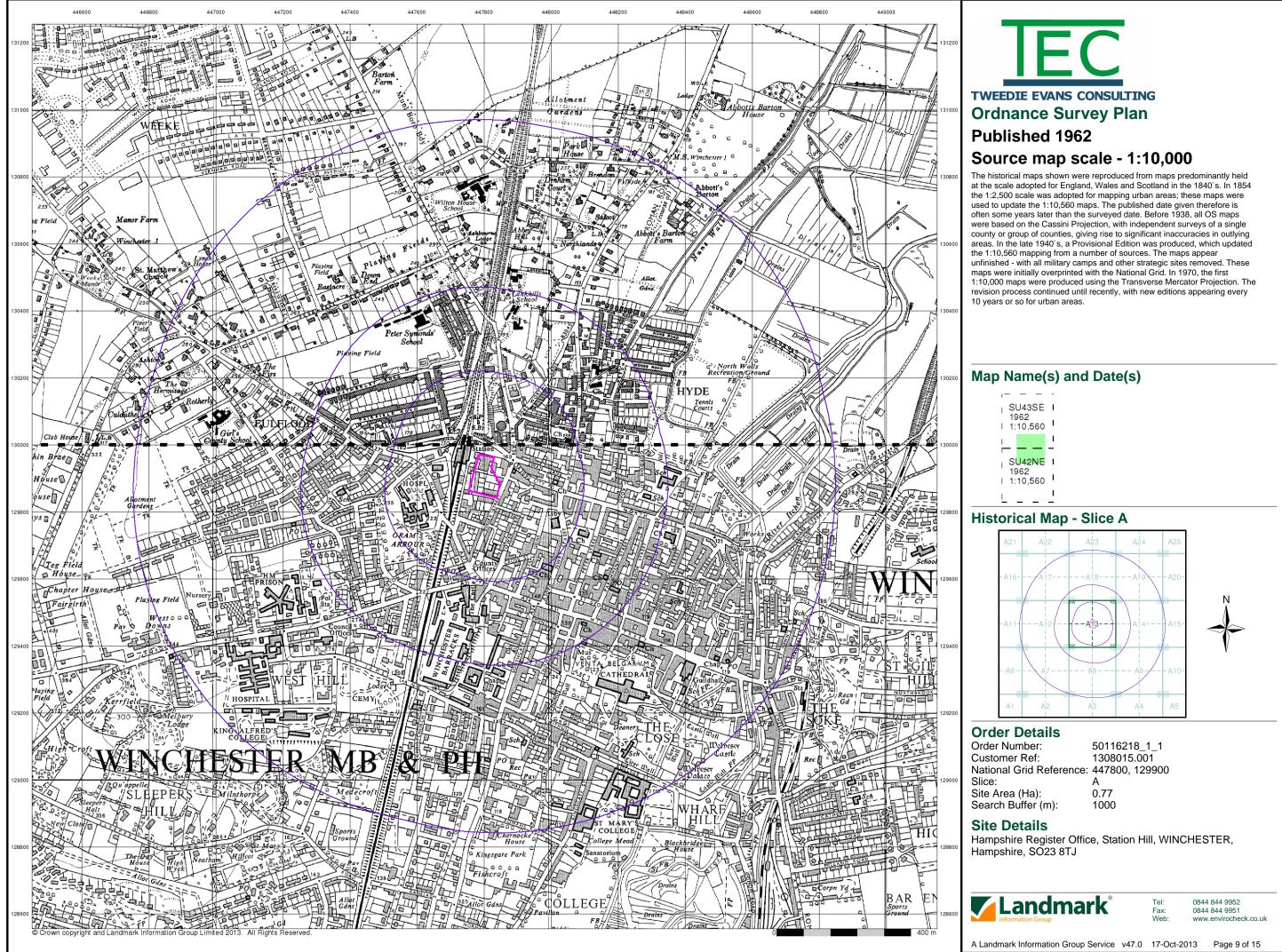
 Customer Ref:
 1308015.001

 National Grid Reference:
 447800, 129900

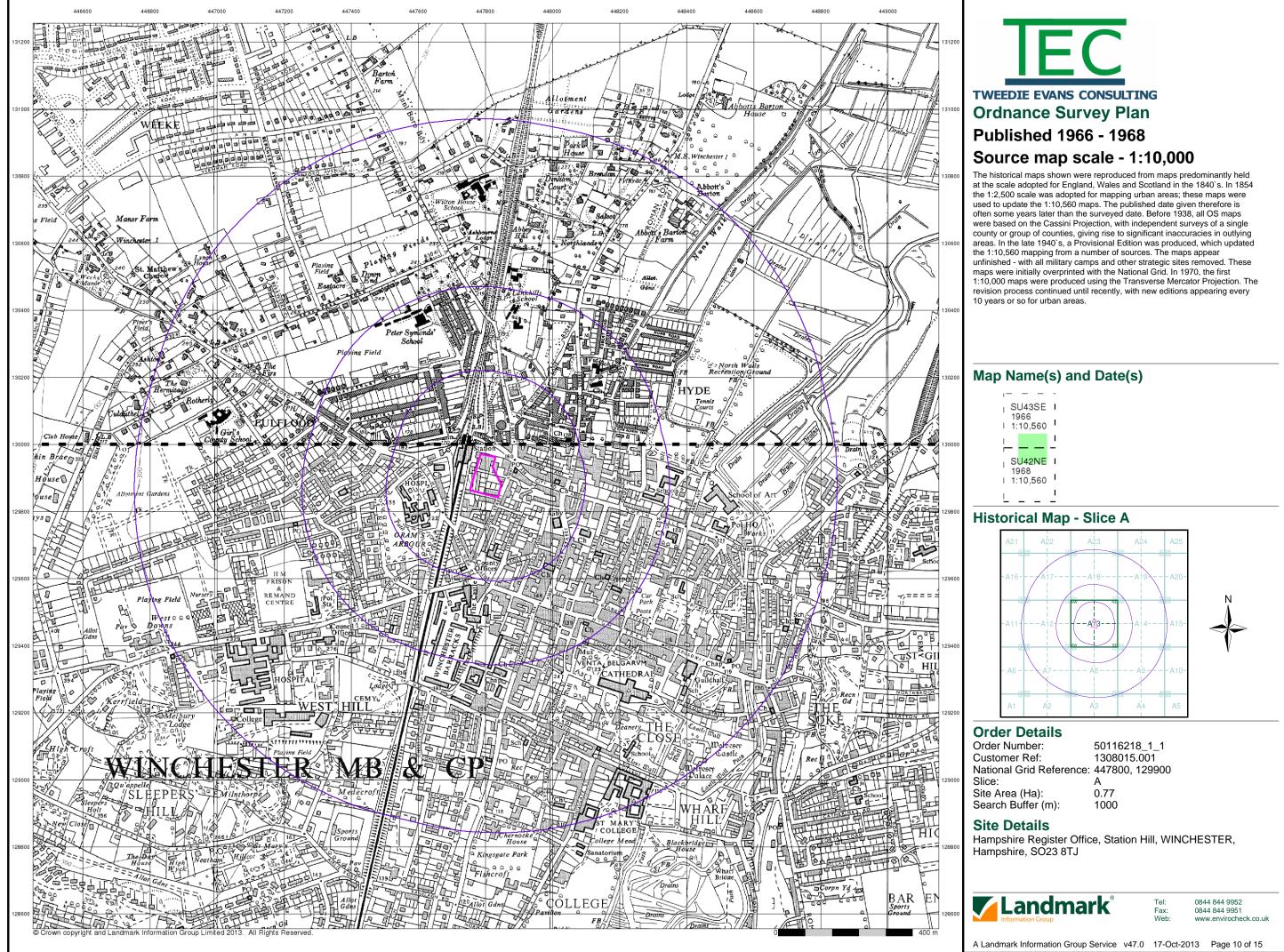
 Slice:
 A

 Site Area (Ha):
 0.77

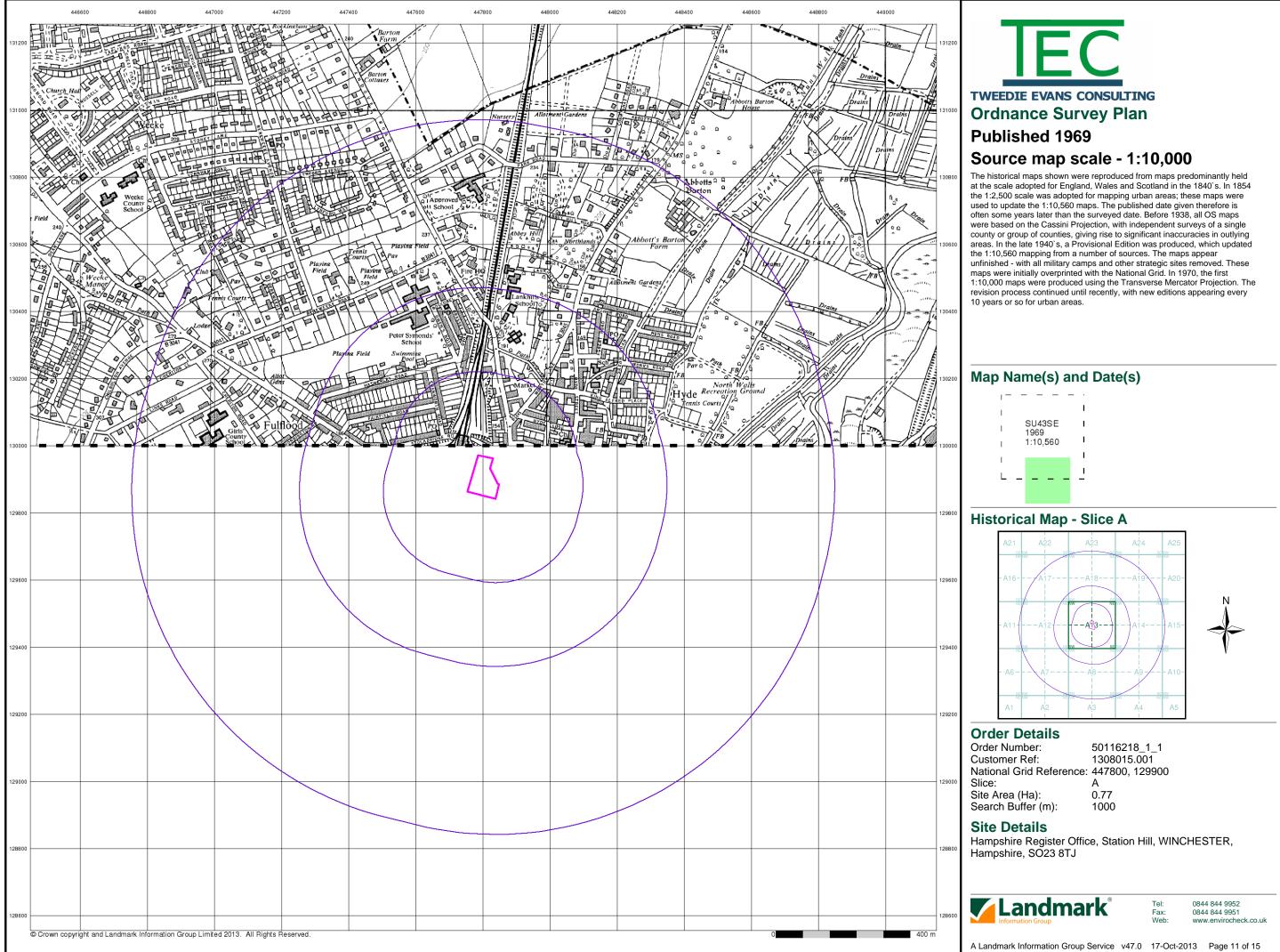
 Search Buffer (m):
 1000

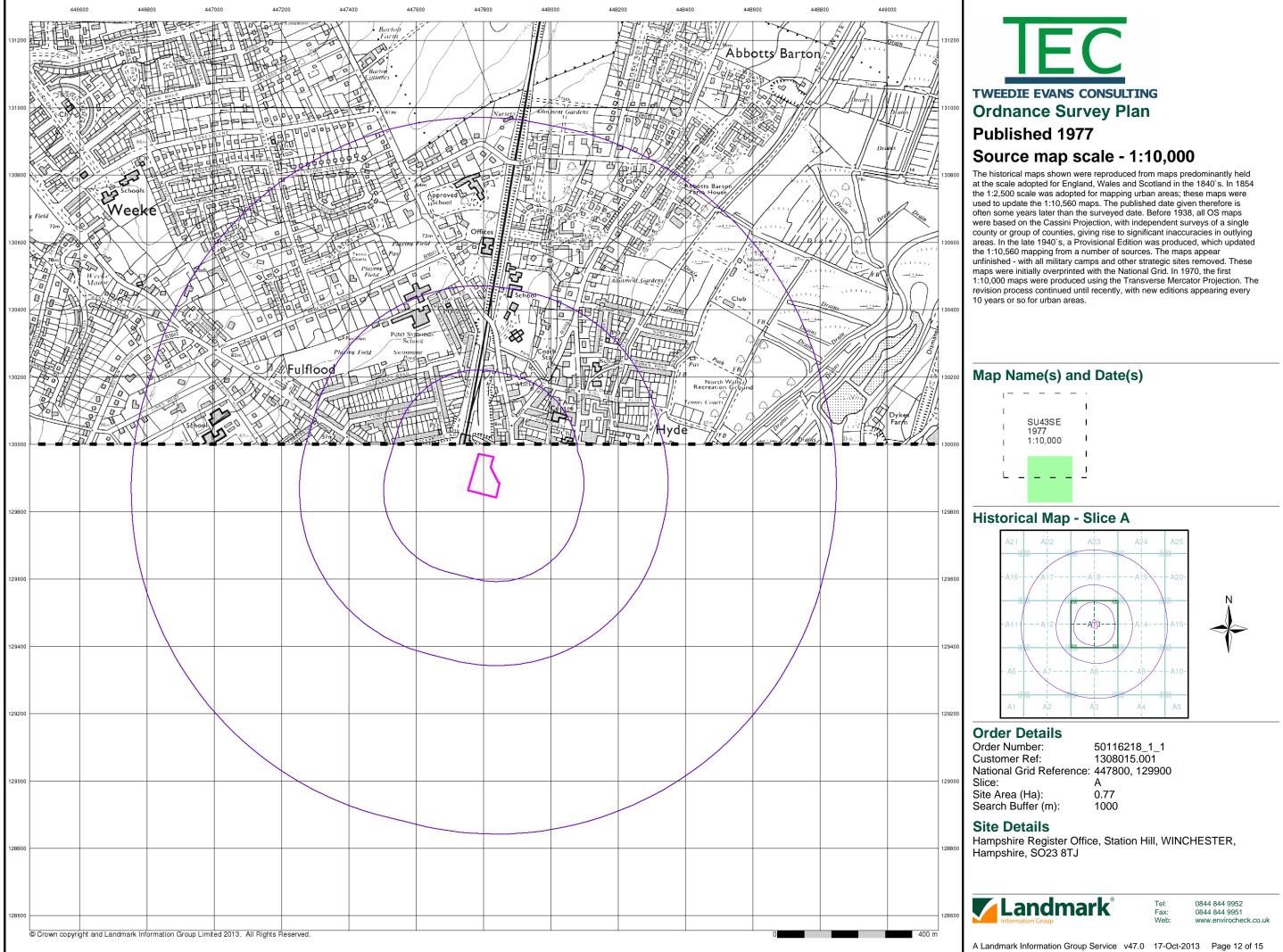

Site Details

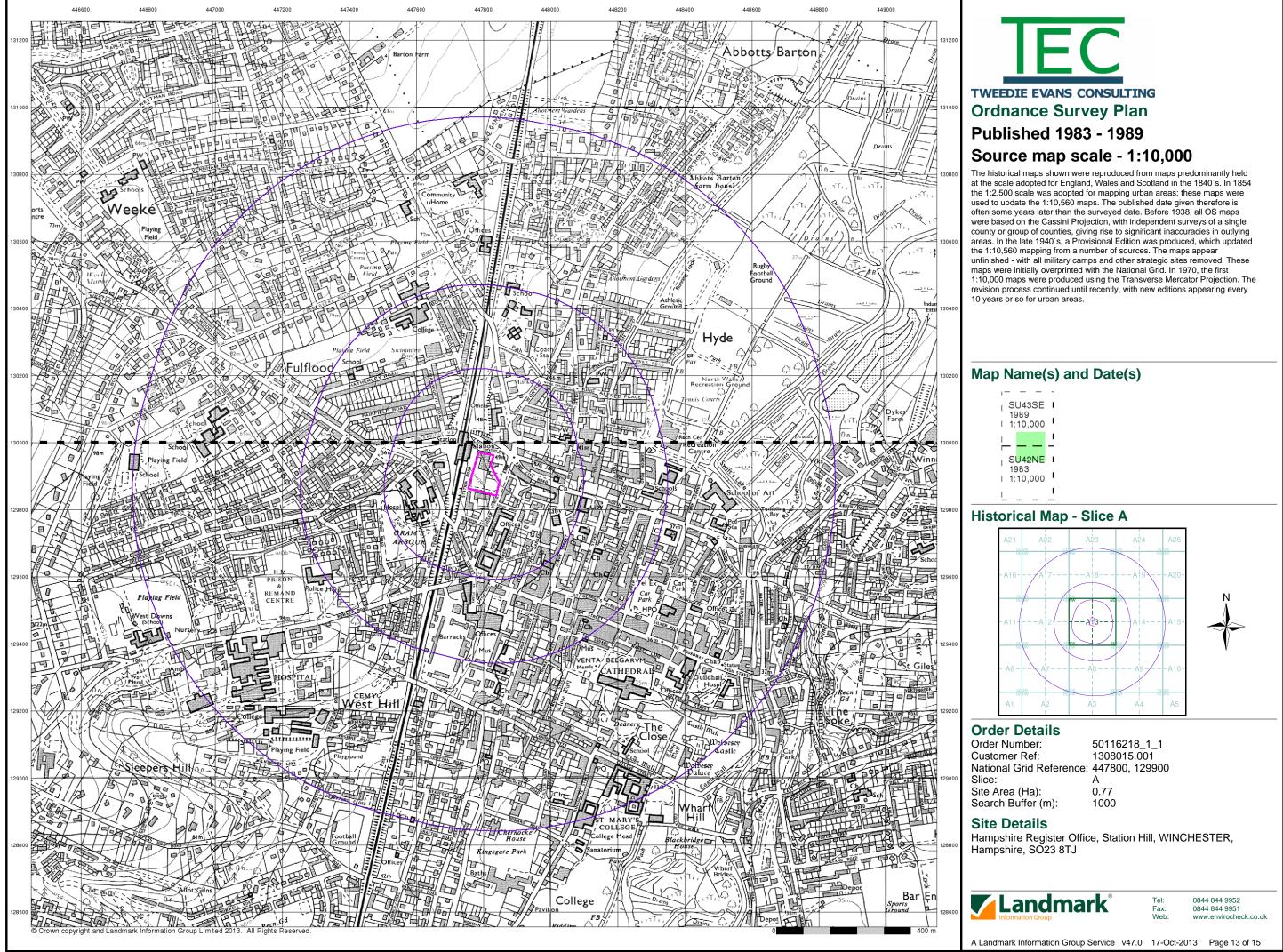
Hampshire Register Office, Station Hill, WINCHESTER, Hampshire, SO23 8TJ

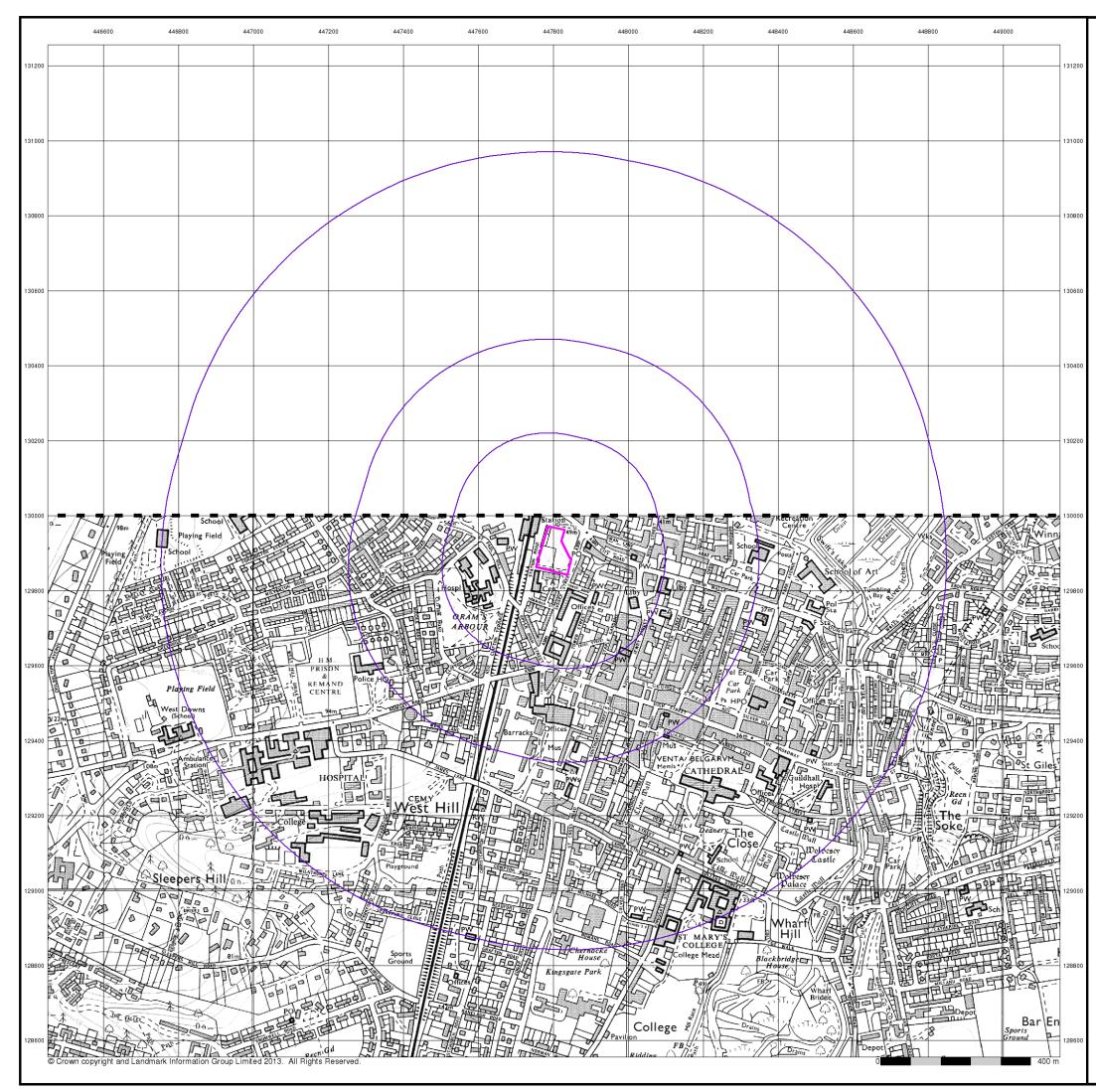


0844 844 9952 0844 844 9951 www.envirocheck.co.uk

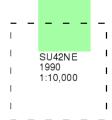

Tel: Fax:



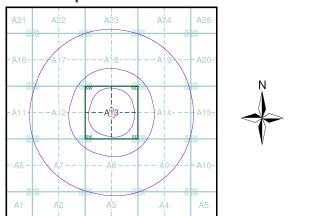







Ordnance Survey Plan

Published 1990


Source map scale - 1:10,000

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

Historical Map - Slice A

Order Details

 Order Number:
 50116218_1_1

 Customer Ref:
 1308015.001

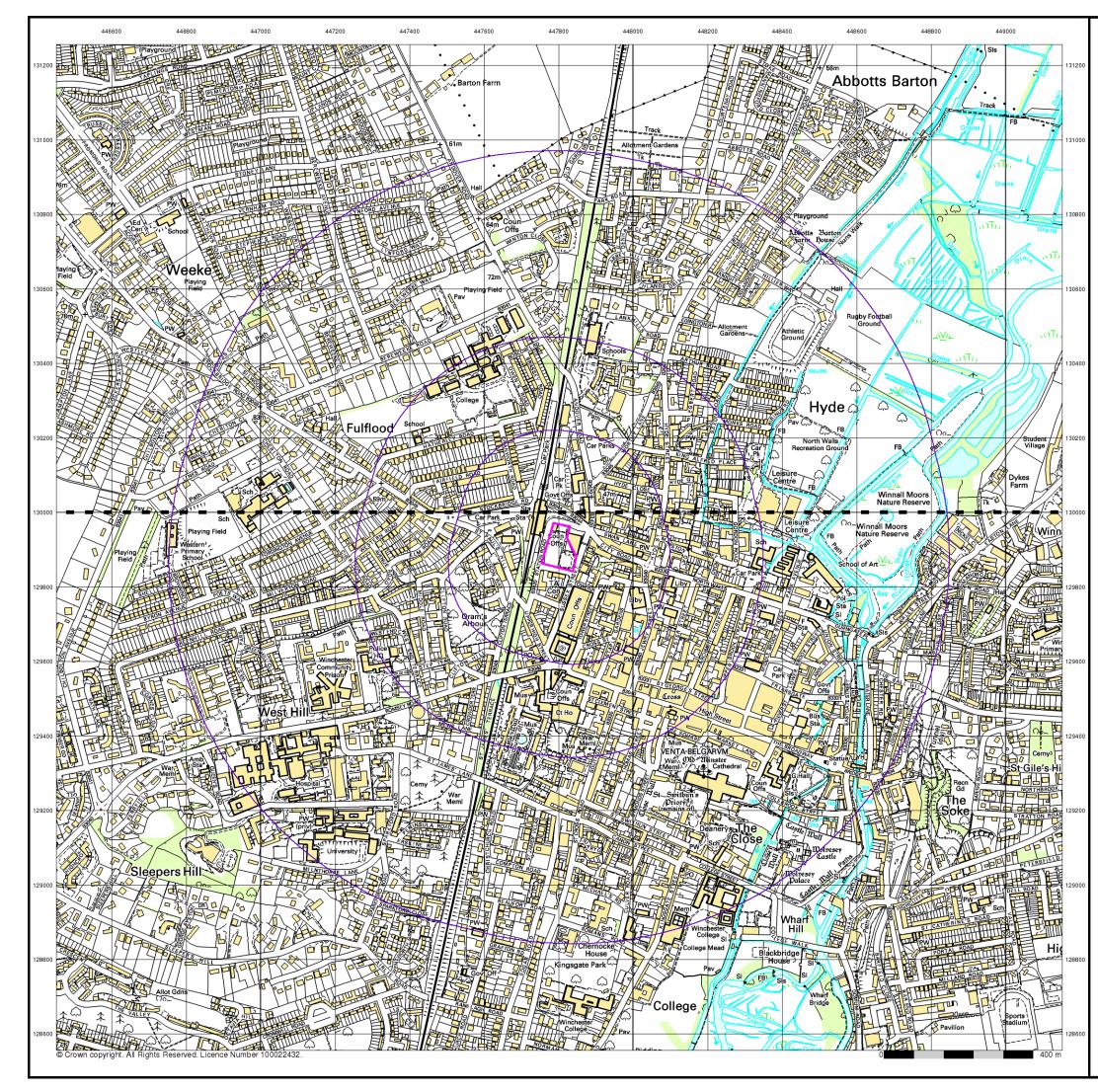
 National Grid Reference:
 447800, 129900

 Slice:
 A

 Site Area (Ha):
 0.77

 Search Buffer (m):
 1000

Site Details


Hampshire Register Office, Station Hill, WINCHESTER, Hampshire, SO23 8TJ

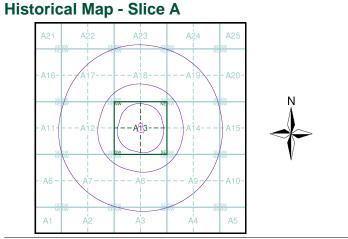
0844 844 9952 0844 844 9951 www.envirocheck.co.uk

Tel:

Fax:

10k Raster Mapping

Published 2013


Source map scale - 1:10,000

The historical maps shown were produced from the Ordnance Survey's 1:10,000 colour raster mapping. These maps are derived from Landplan which replaced the old 1:10,000 maps originally published in 1970. The data is highly detailed showing buildings, fences and field boundaries as well as all roads, tracks and paths. Road names are also included together with the relevant road number and classification. Boundary information depiction includes county, unitary authority, district, civil parish and constituency.

Map Name(s) and Date(s)

| SU43SE | 2013 | 1:10,000 | | SU42NE | 2013 | 1:10,000 |

Order Details

 Order Number:
 50116218_1_1

 Customer Ref:
 1308015.001

 National Grid Reference:
 447800, 129900

 Slice:
 A

 Site Area (Ha):
 0.77

 Search Buffer (m):
 1000

Site Details

Hampshire Register Office, Station Hill, WINCHESTER, Hampshire, SO23 8TJ

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

Tel: Fax:

APPENDIX C

Envirocheck®

Envirocheck® Report:

Datasheet

Order Details:

Order Number: 50116218_1_1

Customer Reference: 1308015.001

National Grid Reference: 447800, 129900

Slice:

Site Area (Ha): 0.77

Search Buffer (m): 1000

Site Details:

Hampshire Register Office Station Hill WINCHESTER Hampshire SO23 8TJ

Client Details:

Mr E Tweedie Tweedie Evans Consulting Ltd The Old Chapel 35a Southover Wells Somerset BA5 1UH

THE EVANS CONSULTING

Contents

Report Section	Page Number
Summary	-
Agency & Hydrological	1
Waste	18
Hazardous Substances	-
Geological	19
Industrial Land Use	31
Sensitive Land Use	39
Data Currency	40
Data Suppliers	44
Useful Contacts	45

Introduction

The Environment Act 1995 has made site sensitivity a key issue, as the legislation pays as much attention to the pathways by which contamination could spread, and to the vulnerable targets of contamination, as it does the potential sources of contamination. For this reason, Landmark's Site Sensitivity maps and Datasheet(s) place great emphasis on statutory data provided by the Environment Agency and the Scottish Environment Protection Agency; it also incorporates data from Natural England (and the Scottish and Welsh equivalents) and Local Authorities; and highlights hydrogeological features required by environmental and geotechnical consultants. It does not include any information concerning past uses of land. The datasheet is produced by querying the Landmark database to a distance defined by the client from a site boundary provided by the client.

In the attached datasheet the National Grid References (NGRs) are rounded to the nearest 10m in accordance with Landmark's agreements with a number of Data Suppliers.

Copyright Notice

© Landmark Information Group Limited 2013. The Copyright on the information and data and its format as contained in this Envirocheck® Report ("Report") is the property of Landmark Information Group Limited ("Landmark") and several other Data Providers, including (but not limited to) Ordnance Survey, British Geological Survey, the Environment Agency and Natural England, and must not be reproduced in whole or in part by photocopying or any other method. The Report is supplied under Landmark's Terms and Conditions accepted by the Customer. A copy of Landmark's Terms and Conditions can be found with the Index Map for this report. Additional copies of the Report may be obtained from Landmark's charges in force from time to time. The Copyright, design rights and any other intellectual rights shall remain the exclusive property of Landmark and /or other Data providers, whose Copyright material has been included in this Report.

Natural England Copyright Notice

Site of Special Scientific Interest, National Nature Reserve, Ramsar, Special Protection Area, Special Conservation Area, Marine Nature Reserve data (derived from Ordnance Survey 1:10000 raster) is provided by, and used with the permission of, Natural England who retain the copyright and Intellectual Property Rights for the data.

Ove Arup Copyright Notice

The Data provided in this report was obtained on Licence from Ove Arup & Partners Limited (for further information, contact mining.review@arup.com). No reproduction or further use of such Data is to be made without the prior written consent of Ove Arup & Partners Limited. The information and data supplied in the product are derived from publicly available records and other third party sources and neither Ove Arup & Partners nor Landmark warrant the accuracy or completeness of such information or data.

Peter Brett Associates Copyright Notice

The cavity data presented has been extracted from the PBA enhanced version of the original DEFRA national cavity databases. PBA/DEFRA retain the copyright & intellectual property rights in the data. Whilst all reasonable efforts are made to check that the information contained in the cavity databases is accurate we do not warrant that the data is complete or error free. The information is based upon our own researches and those collated from a number of external sources and is continually being augmented and updated by PBA. In no event shall PBA/DEFRA or Landmark be liable for any loss or damage including, without limitation, indirect or consequential loss or damage arising from the use of this data.

Radon Potential dataset Copyright Notice

Information supplied from a joint dataset compiled by The British Geological Survey and Public Health England.

Report Version v47.0

Order Number: 50116218_1_1 Date: 17-Oct-2013 rpr_ec_datasheet v47.0	A
---	---

A Landmark	Information	Group	Service

TWEEDIE EVANS CONSULTING					
Data Type	Page Number	On Site	0 to 250m	251 to 500m	501 to 1000m (*up to 2000m)
Agency & Hydrological					
Contaminated Land Register Entries and Notices					
Discharge Consents	pg 1			5	23
Enforcement and Prohibition Notices					
Integrated Pollution Controls					
Integrated Pollution Prevention And Control					
Local Authority Integrated Pollution Prevention And Control					
Local Authority Pollution Prevention and Controls	pg 7		2	2	1
Local Authority Pollution Prevention and Control Enforcements					
Nearest Surface Water Feature	pg 8			Yes	
Pollution Incidents to Controlled Waters	pg 8			5	18
Prosecutions Relating to Authorised Processes					
Prosecutions Relating to Controlled Waters	pg 12			1	
Registered Radioactive Substances	pg 12				1
River Quality	pg 12				3
River Quality Biology Sampling Points	pg 13				1
River Quality Chemistry Sampling Points					
Substantiated Pollution Incident Register					
Water Abstractions	pg 13			1	2 (*9)
Water Industry Act Referrals					
Groundwater Vulnerability	pg 16	Yes	n/a	n/a	n/a
Bedrock Aquifer Designations	pg 16	Yes	n/a	n/a	n/a
Superficial Aquifer Designations			n/a	n/a	n/a
Source Protection Zones	pg 16		3	1	
Extreme Flooding from Rivers or Sea without Defences				n/a	n/a
Flooding from Rivers or Sea without Defences				n/a	n/a
Areas Benefiting from Flood Defences				n/a	n/a
Flood Water Storage Areas				n/a	n/a
Flood Defences				n/a	n/a
Waste					
BGS Recorded Landfill Sites	pg 18				1
Historical Landfill Sites	pg 18				1
Integrated Pollution Control Registered Waste Sites					
Licensed Waste Management Facilities (Landfill Boundaries)					
Licensed Waste Management Facilities (Locations)					
Local Authority Recorded Landfill Sites					
Registered Landfill Sites					
Registered Waste Transfer Sites					
Registered Waste Treatment or Disposal Sites					
	1	4		1	

Summary

Data Type	Page Number	On Site	0 to 250m	251 to 500m	501 to 1000m (*up to 2000m)
Hazardous Substances					
Control of Major Accident Hazards Sites (COMAH)					
Explosive Sites					
Notification of Installations Handling Hazardous Substances (NIHHS)					
Planning Hazardous Substance Consents					
Planning Hazardous Substance Enforcements					
Geological					
BGS 1:625,000 Solid Geology	pg 19	Yes	n/a	n/a	n/a
BGS Estimated Soil Chemistry	pg 19	Yes	Yes	Yes	Yes
BGS Recorded Mineral Sites					
BGS Urban Soil Chemistry					
BGS Urban Soil Chemistry Averages					
Brine Compensation Area			n/a	n/a	n/a
Coal Mining Affected Areas			n/a	n/a	n/a
Mining Instability			n/a	n/a	n/a
Man-Made Mining Cavities	pg 28		2	1	
Natural Cavities	pg 29				1
Non Coal Mining Areas of Great Britain	pg 29	Yes	Yes	n/a	n/a
Potential for Collapsible Ground Stability Hazards	pg 29	Yes	Yes	n/a	n/a
Potential for Compressible Ground Stability Hazards	pg 29		Yes	n/a	n/a
Potential for Ground Dissolution Stability Hazards	pg 29	Yes	Yes	n/a	n/a
Potential for Landslide Ground Stability Hazards	pg 29		Yes	n/a	n/a
Potential for Running Sand Ground Stability Hazards	pg 30		Yes	n/a	n/a
Potential for Shrinking or Swelling Clay Ground Stability Hazards	pg 30		Yes	n/a	n/a
Radon Potential - Radon Affected Areas			n/a	n/a	n/a
Radon Potential - Radon Protection Measures			n/a	n/a	n/a
Industrial Land Use					
Contemporary Trade Directory Entries	pg 31		20	45	24
Fuel Station Entries	pg 38		2		1

Summary

]	Ε	C
TWEEDI	EVANS	CONSULTING

Summary

Data Type	Page Number	On Site	0 to 250m	251 to 500m	501 to 1000m (*up to 2000m)
Sensitive Land Use					
Areas of Adopted Green Belt					
Areas of Unadopted Green Belt					
Areas of Outstanding Natural Beauty					
Environmentally Sensitive Areas					
Forest Parks					
Local Nature Reserves					
Marine Nature Reserves					
National Nature Reserves					
National Parks	pg 39				1
Nitrate Sensitive Areas					
Nitrate Vulnerable Zones	pg 39	1			
Ramsar Sites					
Sites of Special Scientific Interest	pg 39				1
Special Areas of Conservation	pg 39				1
Special Protection Areas					

Map ID	Details		Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
1	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	s Health Computing Ltd Not Given Premises Behind, No44 Jewry Street, WINCHESTER Environment Agency, Southern Region Not Given UV63/2647 Not Supplied Not Supplied 8th April 1980 Not Supplied Unknown Land/Soakaway Not Supplied Not Supplied Located by supplier to within 100m	A13SE (SE)	323	1	448040 129590
2	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	s The Chief Housing Officer Undefined Or Other King Alfred Place, Winchester, Hampshire Environment Agency, Southern Region Not Supplied P01992 1 26th October 1988 26th October 1988 26th October 1988 26th October 1988 1st July 1991 Discharge Of Other Matter-Surface Water Freshwater Stream/River Freshwater River Freshwater River Pre National Rivers Authority Legislation where issue date < 01/09/1989 Located by supplier to within 10m	A14NW (NE)	425	1	448200 130170
2	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	s The Chief Housing Officer Undefined Or Other King Alfred Place, Winchester, Hampshire Environment Agency, Southern Region Not Supplied P01992 1 26th October 1988 26th October 1988 26th October 1988 1st July 1991 Discharge Of Other Matter-Surface Water Freshwater Stream/River Freshwater River Freshwater River Pre National Rivers Authority Legislation where issue date < 01/09/1989 Located by supplier to within 10m	A14NW (NE)	438	1	448210 130180
2	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	s The Chief Housing Officer Undefined Or Other King Alfred Place, Winchester, Hampshire Environment Agency, Southern Region Not Supplied P01992 1 26th October 1988 26th October 1988 26th October 1988 1st July 1991 Discharge Of Other Matter-Surface Water Freshwater Stream/River Freshwater River Pre National Rivers Authority Legislation where issue date < 01/09/1989 Located by supplier to within 10m	A14NW (NE)	452	1	448220 130190

Map ID		Details		Estimated Distance From Site	Contact	NGR
3	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	s L.C.C. (Winchester) Ltd. Undefined Or Other The Brooks, Winchester, Hampshire Environment Agency, Southern Region Not Supplied P01961 1 14th October 1988 14th October 1988 1st July 1991 Discharge Of Other Matter-Surface Water Freshwater Stream/River Freshwater River Pre National Rivers Authority Legislation where issue date < 01/09/1989 Located by supplier to within 10m	A14SW (SE)	489	1	448250 129580
4	Discharge Consent: Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	s L.C.C. (Winchester) Ltd. Undefined Or Other The Brooks, Winchester, Hampshire Environment Agency, Southern Region Not Supplied P01961 1 14th October 1988 14th October 1988 14th October 1988 1st July 1991 Discharge Of Other Matter-Surface Water Freshwater Stream/River Freshwater River Pre National Rivers Authority Legislation where issue date < 01/09/1989 Located by supplier to within 10m	A9NW (SE)	514	1	448230 129510
5	Discharge Consent: Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	s L.C.C. (Winchester) Ltd. Undefined Or Other The Brooks, Winchester, Hampshire Environment Agency, Southern Region Not Supplied P01961 1 14th October 1988 14th October 1988 1st July 1991 Discharge Of Other Matter-Surface Water Freshwater Stream/River Freshwater River Pre National Rivers Authority Legislation where issue date < 01/09/1989 Located by supplier to within 10m	A9NW (SE)	578	1	448330 129540
6	Discharge Consent: Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	s P R Keeley Esq Domestic Property (Single) Mault-Ley, Hillside Close, Winchester, Hampshire, So22 5lw Environment Agency, Southern Region Not Given N02532 1 31st March 1977 31st March 1977 31st March 1977 31st March 1997 Sewage Discharges - Final/Treated Effluent - Not Water Company Into Land Into Land Lapsed (under Environment Act 1995, Schedule 23) Located by supplier to within 100m	A19SW (NE)	641	1	448220 130470

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
7	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	s The Chief Housing Officer Undefined Or Other 36-39 Union Street, Winchester, Hampshire Environment Agency, Southern Region Not Supplied P01876 1 28th September 1988 28th September 1988 28th September 1988 1st July 1991 Discharge Of Other Matter-Surface Water Freshwater Stream/River Freshwater River Pre National Rivers Authority Legislation where issue date < 01/09/1989 Located by supplier to within 10m	A14SE (E)	757	1	448570 129650
8	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	s The Chief Engineer Undefined Or Other Omnibus Station, Broadway, Winchester, Hampshire Environment Agency, Southern Region Not Given H01253 1 12th January 1967 12th January 1967 12th January 1967 8th March 1996 Discharge Of Other Matter-Surface Water Freshwater Stream/River Freshwater River Pre National Rivers Authority Legislation where issue date < 01/09/1989 Located by supplier to within 100m	A9NE (SE)	777	1	448490 129420
9	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	s Bendall Developments Limited Undefined Or Other 62 & 63 Eastgate Street, Winchester, Hampshire Environment Agency, Southern Region Not Given N01229 1 23rd November 1979 23rd November 1979 23rd November 1979 1st July 1991 Discharge Of Other Matter-Surface Water Freshwater Stream/River Freshwater River Pre National Rivers Authority Legislation where issue date < 01/09/1989 Located by supplier to within 100m	A9NE (SE)	836	1	448600 129500
9	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	s Bendall Developments Limited Undefined Or Other 62 & 63 Eastgate Street, Winchester, Hampshire Environment Agency, Southern Region Not Given N01229 1 23rd November 1979 23rd November 1979 23rd November 1979 1st July 1991 Discharge Of Other Matter-Surface Water Freshwater Stream/River Freshwater River Pre National Rivers Authority Legislation where issue date < 01/09/1989 Located by supplier to within 100m	A9NE (SE)	844	1	448600 129480

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
9	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Type: Discharge Type: Discharge Type: Status: Positional Accuracy:	s Bendall Developments Limited Undefined Or Other 62 & 63 Eastgate Street, Winchester, Hampshire Environment Agency, Southern Region Not Given N01229 1 23rd November 1979 23rd November 1979 23rd November 1979 1st July 1991 Discharge Of Other Matter-Surface Water Freshwater Stream/River Freshwater River Pre National Rivers Authority Legislation where issue date < 01/09/1989 Located by supplier to within 100m	A9NE (SE)	853	1	448600 129460
10	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	s Winchester City Council Sewerage Network - Sewers - Others Wales St & Colson Rd, Winchester, Hampshire Environment Agency, Southern Region Not Given P01867 1 28th September 1988 28th September 1988 28th September 1988 31st March 1997 Discharge Of Other Matter-Surface Water Freshwater Stream/River Freshwater River Lapsed (under Environment Act 1995, Schedule 23) Located by supplier to within 100m	A14SE (E)	856	1	448690 129730
11	Discharge Consent: Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	s Bendall Developments Limited Undefined Or Other 62 & 63 Eastgate Street, Winchester, Hampshire Environment Agency, Southern Region Not Supplied N01229 1 23rd November 1979 23rd November 1979 23rd November 1979 1st July 1991 Discharge Of Other Matter-Surface Water Freshwater Stream/River Freshwater River Pre National Rivers Authority Legislation where issue date < 01/09/1989 Located by supplier to within 10m	A9NE (SE)	862	1	448600 129440
11	Discharge Consent: Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	s A.J. Dunning & Sons Ltd. Undefined Or Other Chester Road, Winchester, Hampshire Environment Agency, Southern Region Not Given N01169 1 22nd July 1982 22nd July 1982 22nd July 1982 231st March 1997 Discharge Of Other Matter-Surface Water Freshwater Stream/River Freshwater River Lapsed (under Environment Act 1995, Schedule 23) Located by supplier to within 100m	A9NE (SE)	899	1	448620 129400

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Discharge Consents	S				
11	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Issued Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	The Chief Housing Officer Water Treatment Works 7-13 Water Lane, Winchester, Hampshire Environment Agency, Southern Region Not Supplied P01875 1 28th September 1988 28th September 1988 28th September 1988 1st July 1991 Discharge Of Other Matter-Surface Water Freshwater Stream/River Freshwater River Pre National Rivers Authority Legislation where issue date < 01/09/1989 Located by supplier to within 10m	A9NE (SE)	924	1	448620 129350
	Discharge Consents	8				
12	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Carpenter Turner,Burford & Marlow Education The Pilgrims' School, Winchester, Hampshire Environment Agency, Southern Region Not Given H02615 1 23rd August 1966 23rd August 1966 23rd August 1966 31st March 1997 Discharge Of Other Matter-Swimming Pool Contents Into Land Into Land Lapsed (under Environment Act 1995, Schedule 23) Located by supplier to within 100m	A9SW (SE)	894	1	448270 129060
12	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Environment: Receiving Water: Status: Positional Accuracy:	s The Headmaster Recreational & Cultural The Pilgrims School - Swimming Pool The Pilgrims School, The Close, Winchester, Hampshire, So23 9lt Environment Agency, Southern Region River Itchen H01088 2 6th February 2007 6th February 2007 6th February 2007 Not Supplied Discharge Of Other Matter-Swimming Pool Contents Freshwater Stream/River River Itchen Modified (Water Resources Act 1991, Schedule 10 as amended by Environment Act 1995) Located by supplier to within 10m	A9SW (SE)	931	1	448310 129040
	Discharge Consents	S.				
12	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status:	The Headmaster Recreational & Cultural The Pilgrims School - Swimming Pool The Pilgrims School, The Close, Winchester, Hampshire, So23 9lt Environment Agency, Southern Region River Itchen H01088 1 14th April 1966 14th April 1966 5th February 2007 Non Water Company (Private) Sewage Freshwater Stream/River River Itchen Pre National Rivers Authority Legislation where issue date < 01/09/1989 Located by supplier to within 100m	A9SW (SE)	931	1	448310 129040

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
13	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	s Winchester City Council Sewerage Network - Sewers - Others Wales St & Colson Rd, Winchester, Hampshire Environment Agency, Southern Region Not Given P01867 1 28th September 1988 28th September 1988 28th September 1988 31st March 1997 Discharge Of Other Matter-Surface Water Freshwater Stream/River Freshwater River Lapsed (under Environment Act 1995, Schedule 23) Located by supplier to within 100m	A14SE (E)	908	1	448750 129780
14	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	s Winchester City Council Sewerage Network - Sewers - Others Wales St & Colson Rd, Winchester, Hampshire Environment Agency, Southern Region Not Given P01867 1 28th September 1988 28th September 1988 28th September 1988 31st March 1997 Discharge Of Other Matter-Surface Water Freshwater Stream/River Freshwater River Lapsed (under Environment Act 1995, Schedule 23) Located by supplier to within 100m	A14SE (E)	923	1	448770 129840
15	Discharge Consent: Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	s Winchester City Council Sewerage Network - Sewers - Others Wales St & Colson Rd, Winchester, Hampshire Environment Agency, Southern Region Not Given P01867 1 28th September 1988 28th September 1988 28th September 1988 31st March 1997 Discharge Of Other Matter-Surface Water Freshwater Stream/River Freshwater River Lapsed (under Environment Act 1995, Schedule 23) Located by supplier to within 100m	A14SE (E)	932	1	448780 129890
15	Discharge Consent: Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	s Winchester City Council Sewerage Network - Sewers - Others Wales St & Colson Rd, Winchester, Hampshire Environment Agency, Southern Region Not Given P01867 1 28th September 1988 28th September 1988 28th September 1988 31st March 1997 Discharge Of Other Matter-Surface Water Freshwater Stream/River Freshwater River Lapsed (under Environment Act 1995, Schedule 23) Located by supplier to within 100m	A14NE (E)	943	1	448790 129930

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Discharge Consent	S				
15	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Messrs Evans, Roberts & Partners Undefined Or Other 77 Wales Street, Winchester, Hampshire Environment Agency, Southern Region Not Given H02754 1 4th October 1971 4th October 1971 4th October 1971 31st March 1997 Trade Discharge - Process Water Into Land Into Land Lapsed (under Environment Act 1995, Schedule 23) Located by supplier to within 100m	A14NE (E)	953	1	448800 129930
	Discharge Consent	• • • • •				
16	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status:	Conder Products Undefined Or Other Abbotts Barton House, Worthy Road, Winchester, Hampshire Environment Agency, Southern Region Not Given H00062 1 22nd January 1965 22nd January 1965 31st March 1997 Non Water Company (Private) Sewage Freshwater Stream/River Freshwater River Lapsed (under Environment Act 1995, Schedule 23) Located by supplier to within 100m	A19NW (NE)	933	1	448460 130650
	Discharge Consent	e				
17	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status:	Mr Michael Toosey Domestic Property (Single) 81 Andover Road, Winchester, Winchester, Hampshire, So22 6au Environment Agency, Southern Region River Itchen Npswqd005036 1 22nd October 2008 22nd October 2008 Not Supplied Sewage Discharges - Final/Treated Effluent - Not Water Company Land/Soakaway Groundwaters Via Soakaway New Consent (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995) Located by supplier to within 10m	A18NW (N)	952	1	447496 130877
	Discharge Consent	S				
18	-	Hampshire County Council Domestic Property (Multiple) The Castle, Winchester, Hampshire Environment Agency, Southern Region Not Given Not Given Not Given 20th August 1979 20th August 1979 20th August 1979 Not Supplied Sewage Discharges - Final/Treated Effluent - Not Water Company Freshwater Stream/River Freshwater River Pre National Rivers Authority Legislation where issue date < 01/09/1989 Located by supplier to within 10m	A9SW (SE)	1000	1	448460 129060
	-	Iution Prevention and Controls				447004
19	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status: Positional Accuracy:	Class One Dry Cleaners Andover Road, Winchester, SO23 7BS Winchester City Council, Environmental Health Department PERM07/02 Not Supplied Local Authority Pollution Prevention and Control PG6/46 Dry cleaning Permitted Manually positioned to the address or location	A13NE (NE)	60	2	447881 129993

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Local Authority Pol	Iution Prevention and Controls				
20	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status: Positional Accuracy:	Market Winchester Express Andover Road, WINCHESTER, Hampshire, SO23 7 Winchester City Council, Environmental Health Department PERW/14/09 Not Supplied Local Authority Pollution Prevention and Control PG1/14 Petrol filling station Authorisation has varied Manually positioned to the address or location	A13NE (N)	213	2	447847 130175
	Local Authority Pol	Iution Prevention and Controls				
21	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status:	Evans Halshaw Hyde Street, WINCHESTER, Hampshire, SO23 7DP Winchester City Council, Environmental Health Department AUTH93/11 22nd October 1993 Local Authority Air Pollution Control PG6/34 Respraying of road vehicles Authorised Automatically positioned to the address	A13NE (NE)	303	2	448124 130036
	Local Authority Pol	Iution Prevention and Controls				
22	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status: Positional Accuracy:	Five Star Dry Cleaners Stockbridge Road, Winchester, SO22 6RN Winchester City Council, Environmental Health Department PERM07/01 Not Supplied Local Authority Pollution Prevention and Control PG6/46 Dry cleaning Permitted Manually positioned to the address or location	A12NE (W)	324	2	447452 129983
	Local Authority Pol	Iution Prevention and Controls				
23	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status: Positional Accuracy:	Gervades 7 Upper Brook Street, Winchester Winchester City Council, Environmental Health Department PERM07/05 Not Supplied Local Authority Pollution Prevention and Control PG6/46 Dry cleaning Permitted Manually positioned to the address or location	A9NW (SE)	505	2	448223 129515
	Nearest Surface Wa	iter Feature				
			A8NW (SW)	331	-	447635 129554
24	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Other Transport 3 Cranworth Road, WINCHESTER Environment Agency, Southern Region Oils - Petrol Loss Of 3 Litres Of Petrol To Drain; Road (Road Traffic Accident) 6th November 1995 2143 Not Given Not Given Oils/Related Products Category 3 - Minor Incident Located by supplier to within 100m	A18SW (N)	341	1	447700 130300
	Pollution Incidents	to Controlled Waters				
25	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity: Positional Accuracy:	Miscellaneous Premises: Unknown Hyde Brook, WINCHESTER Environment Agency, Southern Region Oils - Unknown Film Of Oil On Brook 1st August 1998 798399 Not Given Not Given Poor Operational Practice Category 3 - Minor Incident Located by supplier to within 100m	A14SW (E)	352	1	448200 129900

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
26	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Domestic/Residential Gordon Road, WINCHESTER Environment Agency, Southern Region Miscellaneous - Inert Suspended Solids Stream Turned Grey 13th August 1993 811 Not Given Not Given Industrial Chemicals Category 3 - Minor Incident Located by supplier to within 100m	A14NW (E)	371	1	448201 130001
27	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Other General Premises Union Building, Winchester Art College Environment Agency, Southern Region Oils - Other Oil Loss Of 1500 Litres Heating Oil 22nd October 1992 353 Not Given Not Given Oils/Related Products Category 3 - Minor Incident Located by supplier to within 100m	A14SW (E)	459	1	448300 129800
28	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Other General Premises Location Description Not Available Environment Agency, Southern Region Miscellaneous - Inert Suspended Solids Stream Turned Cloudy; Miscellaneous Premises: Other 17th July 1995 1955 Not Given Not Given Miscellaneous/Other Pollution Type Category 3 - Minor Incident Located by supplier to within 100m	A14NW (E)	467	1	448301 130001
29	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters WSC Sewage, Sewerage & Supply Market Street, WINCHESTER Environment Agency, Southern Region General Biodegradable : Crude Sewage & Sewerage Material Not Supplied 29th May 1999 313 Itchen Potential River High Flow Category 3 - Minor Incident Approximate location provided by supplier	A9NW (SE)	575	1	448300 129500
30	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Other Utilities Adjacent To Central Park Body Shop Environment Agency, Southern Region Oils - Waste Oil Oil In Stream 28th September 1992 316 Not Given Not Given Oils/Related Products Category 3 - Minor Incident Located by supplier to within 100m	A19SW (NE)	643	1	448300 130400
31	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Road Romsey Road, St James Lane, WINCHESTER Environment Agency, Southern Region Oils - Petrol 6 Gallons Of Petrol Down Drain 7th December 1992 409 Not Given Not Given Oils/Related Products Category 3 - Minor Incident Located by supplier to within 100m	A7NE (SW)	649	1	447300 129400

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
32	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Miscellaneous Premises: Unknown By The Leisure Centre, WINCHESTER Environment Agency, Southern Region Oils - Diesel (Including Agricultural) Lots Of Oil Or Petrol In River 20th April 1996 796188 Not Given Not Given Unknown Category 3 - Minor Incident Located by supplier to within 100m	A14SE (E)	652	1	448500 129895
32	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Other General Premises North Walls, Near Leisure Centre, WINCHESTER Environment Agency, Southern Region Oils - Waste Oil Oil On Stream; Miscellaneous Premises: Unknown 28th January 1994 1054 Not Given Not Given Not Given Oils/Related Products Category 3 - Minor Incident Located by supplier to within 100m	A14SE (E)	652	1	448500 129900
33	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Demolition Gordon Road, WINCHESTER Environment Agency, Southern Region Oils - Waste Oil Pink Or Red Colour In Stream 12th April 1996 796171 Not Given Not Given Unknown Category 3 - Minor Incident Located by supplier to within 100m	A14NE (E)	663	1	448501 130001
34	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Contaminated Land X-Ray Department, Royal Hampshire County Hospital Environment Agency, Southern Region Chemicals - Other Organic Spillage Of 20 Litres Of Photographic Mixture 14th July 1998 798349 Not Given Not Given Vandalism Category 3 - Minor Incident Located by supplier to within 100m	A7NE (SW)	722	1	447200 129400
35	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Other General Premises Between North Walls, And Friarsgate Environment Agency, Southern Region Miscellaneous - Inert Suspended Solids Stream Discoloured At 10 Am Most Days 13th May 1992 70 Not Given Not Given Not Given Miscellaneous/Other Pollution Type Category 3 - Minor Incident Located by supplier to within 100m	A9NE (SE)	745	1	448500 129500
36	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters No Premises Identified Cathedral Grounds, WINCHESTER Environment Agency, Southern Region Organic Chemicals : Mineral & Synthetic Oils Not Supplied 1st November 1999 3339 Itchen Potential River Other Cause Category 3 - Minor Incident Approximate location provided by supplier	A9NW (SE)	751	1	448300 129250

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
37	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Other General Premises Between King Alfred Place And, King Alfred Terrace, WINCHESTER Environment Agency, Southern Region Miscellaneous - Unknown Strong Smell Of Sewage Plus Small Dead Pike In River; Domestic/Residential 10th September 1995 2054 Not Given Not Given Miscellaneous/Other Pollution Type Category 3 - Minor Incident Located by supplier to within 100m	A14NE (E)	806	1	448600 130200
38	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Other Utilities Hillier Way, Abbots Barton Environment Agency, Southern Region Oils - Other Oil Oil On River Itchen 23rd April 1993 615 Not Given Not Given Not Given Oils/Related Products Category 3 - Minor Incident Located by supplier to within 100m	A19SW (NE)	821	1	448450 130500
39	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Domestic/Residential Abbey Gardens, WINCHESTER Environment Agency, Southern Region General Biodegradable : Household Domestic Waste Not Supplied 29th July 1999 2655 Itchen Potential River Deliberate Action Category 3 - Minor Incident Approximate location provided by supplier	A9NE (SE)	856	1	448500 129300
40	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Industrial: Other Louisiana Pub, Bridge Street, WINCHESTER Environment Agency, Southern Region Miscellaneous - Inert Suspended Solids Cloudy Water; Construction 20th June 1994 1315 Not Given Not Given Miscellaneous/Other Pollution Type Category 3 - Minor Incident Located by supplier to within 100m	A14SE (E)	856	1	448700 129795
40	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Industrial: Other 300 Metres Downstream Durngate Mill Environment Agency, Southern Region Miscellaneous - Inert Suspended Solids Milkly White Discharge; Construction 17th June 1994 1310 Not Given Not Given Not Given Miscellaneous/Other Pollution Type Category 3 - Minor Incident Located by supplier to within 100m	A14SE (E)	856	1	448700 129800
41	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Domestic/Residential Coulson Close, WINCHESTER Environment Agency, Southern Region Oils - Waste Oil Oil On River 24th May 1993 680 Not Given Not Given Oils/Related Products Category 3 - Minor Incident Located by supplier to within 100m	A9NE (SE)	881	1	448600 129400

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
42	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Domestic/Residential Durngate Mill, WINCHESTER Environment Agency, Southern Region Chemicals - Detergents/Surfactant Large Amounts Of Foam On River 31st March 1993 570 Not Given Not Given Not Given Industrial Chemicals Category 2 - Significant Incident Located by supplier to within 100m	A14SE (E)	896	1	448700 129600
43	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Road (Road Traffic Accident) Water Lane, Near Bottom Of, Blue Ball Lane, WINCHESTER Environment Agency, Southern Region Oils - Waste Oil Oil Emptied Into River 23rd July 1996 796342 Not Given Road Traffic Accident Category 3 - Minor Incident Located by supplier to within 100m	A9NE (SE)	928	1	448700 129500
43	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters No Premises Identified Mildmay Court, Eastgate Street, WINCHESTER Environment Agency, Southern Region Organic Chemicals : Hydraulic Oils / Fluids Not Supplied 18th May 1999 219 18then Potential River Plant / Machinery Failure : Other Category 3 - Minor Incident Approximate location provided by supplier	A9NE (SE)	930	1	448700 129495
44	Location: Prosecution Text: Prosecution Act: Hearing Date: Verdict: Fine: Cost:	ing to Controlled Waters Hyde Street, Hyde Street, Winchester, SO23 7 Causing Dirty Water To Enter A Tributary Of The River Itchen. Wra91 S85 10th December 2001 Guilty 1000 1215 Manually positioned to the road within the address or location	A13NE (NE)	308	1	448091 130125
45	Registered Radioac Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status: Positional Accuracy:	tive Substances Royal Hampshire County Hospital Romsey Road, WINCHESTER, Hampshire, SO22 5DG Environment Agency, Southern Region AD7834 31st March 1991 Not Supplied Authorisation under RSA Authorisation either revoked or cancelledCancelled Automatically positioned to the address	A7NW (SW)	938	1	446987 129323
	River Quality Name: GQA Grade: Reach: Estimated Distance (km): Flow Rate: Flow Rate: Flow Type: Year:	Nuns Walk Strm River Quality A Itchen Conf - Source 5.3 Flow less than 0.31 cumecs River 2000	A14SE (E)	646	1	448493 129850
	River Quality Name: GQA Grade: Reach: Estimated Distance (km): Flow Rate: Flow Type: Year:	Itchen River Quality A Itchen Navigation Conf - Durngate Mill 4.2 Flow less than 10 cumecs River 2000	A14SE (E)	821	1	448652 129713

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	River Quality Name: GQA Grade: Reach: Estimated Distance (km): Flow Rate: Flow Type: Year:	Itchen River Quality A Durngate Mill - U/S Itchen Abbas F.F. 8.4 Flow less than 5 cumecs River 2000	A14SE (E)	821	1	448652 129713
46	River Quality Biolog Name: Reach: Estimated Distance: Positional Accuracy: Year: GQA Grade: Year: GQA Grade:	Itchen Itchen Navigation Confluence To Durngate Mill	A14SE (E)	801	1	448620 129670
47	Year: GQA Grade: Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	2009 River Quality Biology GQA Grade A - Very Good Southern Water Services Ltd 11/42/22.4/80 100 Itchen Valley Point B Environment Agency, Southern Region Public Water Supply: Potable Water Supply - Direct Water may be abstracted from a single point Groundwater Not Supplied Not Supplied See Licence Map 01 January 31 December 11th June 2009 Not Supplied Located by supplier to within 10m	A8NW (SW)	443	1	447500 129500
48	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Positional Accuracy:	Brian Hampson & Paul Hampson & Sheila Lemon 11/42/22.6/78 101 Winchester Laundry, Hyde Abbey Road Environment Agency, Southern Region Industrial; Commercial And Public Services: Laundry Use Water may be abstracted from a single point Groundwater Not Supplied Not Supplied See Licence Map 01 January 31 December 30th January 2003 Not Supplied Located by supplier to within 10m	A14SE (E)	724	1	448570 129830

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
48	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Winchester Laundry & Cleaners Ltd 11/42/22.6/78 100 Winchester Laundry, Hyde Abbey Road Environment Agency, Southern Region Industrial; Commercial And Public Services: Laundry Use Water may be abstracted from a single point Groundwater Not Supplied Not Supplied See Licence Map 01 January 31 December 14th November 1989 Not Supplied Located by supplier to within 10m	A14SE (E)	724	1	448570 129830
	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Southern Water Services Ltd 11/42/22.6/129 100 Sewage Ps Point B At Garnier Road, Winchester Environment Agency, Southern Region Water supply related: General Washing/Process Washing Water may be abstracted from a single point Groundwater Not Supplied Not Supplied See Licence Map 01 January 31 December 27th March 1979 Not Supplied Located by supplier to within 100m	A3SE (S)	1589	1	447980 128260
	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Southern Water Services Ltd 11/42/22.6/129 100 Sewage Ps Point B At Garnier Road, Winchester Environment Agency, Southern Region Other Industrial/Commercial/Public Services: Non-Evaporative Cooling Water may be abstracted from a single point Groundwater Not Supplied Not Supplied See Licence Map 01 January 31 December 27th March 1979 Not Supplied Located by supplier to within 10m	A3SE (S)	1589	1	447980 128260
	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Southern Water Services Ltd 11/42/22.6/129 100 Sewage Ps Point A At Garnier Road, Winchester Environment Agency, Southern Region Other Industrial/Commercial/Public Services: Non-Evaporative Cooling Water may be abstracted from a single point Groundwater Not Supplied Not Supplied See Licence Map 01 January 31 December 27th March 1979 Not Supplied Located by supplier to within 10m	A3SE (S)	1606	1	447950 128240

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Positional Accuracy:	Southern Water Services Ltd 11/42/22.6/129 100 Sewage Ps Point A At Garnier Road, Winchester Environment Agency, Southern Region Water supply related: General Washing/Process Washing Water may be abstracted from a single point Groundwater Not Supplied Not Supplied See Licence Map 01 January 31 December 27th March 1979 Not Supplied Located by supplier to within 10m	A3SE (S)	1606	1	447950 128240
	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Positional Accuracy:	Southern Water Services Ltd 11/42/22.6/129 100 Sewage Ps Point C At Garnier Road, Winchester Environment Agency, Southern Region Water supply related: General Washing/Process Washing Water may be abstracted from a single point Groundwater 0 45460 See Licence Map 01 January 31 December 27th March 1979 Not Supplied Located by supplier to within 10m	A3SE (S)	1629	1	447990 128220
	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Positional Accuracy:	Southern Water Services Ltd 11/42/22.6/129 100 Sewage Ps Point C At Garnier Road, Winchester Environment Agency, Southern Region Other Industrial/Commercial/Public Services: Non-Evaporative Cooling Water may be abstracted from a single point Groundwater Not Supplied Not Supplied See Licence Map 01 January 31 December 27th March 1979 Not Supplied Located by supplier to within 10m	A3SE (S)	1629	1	447990 128220
	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Winchester College 31/105 1 Point A, Borehole At Garnier Road Environment Agency, Southern Region Aquaculture: Fish Farm/Cress Pond Throughflow Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Not Supplied O1 November 31 July 12th February 2008 Not Supplied Located by supplier to within 10m	(S)	1744	1	448110 128120

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Water Abstractions					
	Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised End: Permit Start Date: Permit End Date:	Winchester College So/042/0031/019 1 Point A, Borehole At Garnier Road Environment Agency, Southern Region Aquaculture: Fish Farm/Cress Pond Throughflow Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Not Supplied 01 November 01 August 17th February 2012 Not Supplied Located by supplier to within 10m	(S)	1749	1	448113 128115
	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Webbs Country Foods Ltd. 22.6/156 Not Supplied Winnall, WINCHESTER Environment Agency, Southern Region General Industrial Not Supplied Groundwater 327 85101 H5 Chalk Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Located by supplier to within 100m	A25SE (NE)	1952	1	449450 131050
	Groundwater Vulne Soil Classification: Map Sheet: Scale:	Prability Soils of High Leaching Potential (U) - Soil information for restored mineral workings and urban areas is based on fewer observations than elsewhere. A worst case vulnerability classification (H) assumed, until proved otherwise Sheet 52 Southern Hampshire 1:100,000	A13SE (SE)	0	1	447804 129903
	Drift Deposits None					
	Bedrock Aquifer De	esignations				
	Aquifer Desination:	-	A13SE (SE)	0	3	447804 129903
	Superficial Aquifer No Data Available	Designations				
49	Source Protection 2 Name: Source: Reference: Type:	Zones Various Environment Agency, Head Office Not Supplied Zone III (Total Catchment): The total area needed to support the discharge from the protected groundwater source.	A13SW (SW)	86	1	447671 129838
50	Source Protection 2 Name: Source: Reference: Type:	Zones Romsey Road Environment Agency, Head Office Su232 Zone I (Inner Protection Zone): Travel time of 50 days or less to the groundwater source.	A13SW (SW)	86	1	447671 129838
51	Source Protection 2 Name: Source: Reference: Type:	Zones Romsey Road Environment Agency, Head Office Su232 Zone II (Outer Protection Zone): Either 25% of the source area or a 400 day travel time whichever is greater.	A13SW (SW)	86	1	447671 129838
52	Source Protection 2 Name: Source: Reference: Type:	Zones Romsey Road Environment Agency, Head Office Su232 Groundwater Source	A7NE (SW)	494	1	447420 129500

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Flooding from Rivers or Sea without Defences				
	None				
	Areas Benefiting from Flood Defences				
	None				
	Flood Water Storage Areas				
	None				
	Flood Defences				
	None				

Waste

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Recorded Lane					
53	Site Name: Location: Authority: Ground Water: Surface Water: Geology: Positional Accuracy: Boundary Accuracy:	Nuns Road WINCHESTER, Hampshire British Geological Survey, National Geoscience Information Service Information not available Information not available N/A Positioned by the supplier Moderate	A19SE (NE)	800	3	448480 130428
	Historical Landfill S	ites				
54	Licence Holder: Location: Name: Operator Location: Boundary Accuracy: Provider Reference: First Input Date: Last Input Date: Specified Waste Type: EA Waste Ref: Regis Ref: BGS Ref: Other Ref:		A19SE (NE)	804	1	448486 130425
	Local Authority Lan	Local Authority Landfill Coverage				
	Name:	Winchester City Council - Has supplied landfill data		0	2	447804 129903
	Local Authority Lan	dfill Coverage				
	Name:	Hampshire County Council - Had landfill data but passed it to the relevant environment agency		0	8	447804 129903

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS 1:625,000 Soli	d Geology				
	Description:	Chalk including Red Chalk	A13SE (SE)	0	3	447804 129903
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration:	I Chemistry British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg <1.8 mg/kg	A13SE (SE)	0	4	447804 129903
	Chromium Concentration: Lead Concentration: Nickel Concentration:	90 - 120 mg/kg <150 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration:	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg <1.8 mg/kg	A13NE (N)	30	4	447804 130000
	Chromium Concentration: Lead Concentration: Nickel Concentration:	90 - 120 mg/kg <150 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil	l Chemistry				
	Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg	A13NE (N)	54	4	447811 130023
	Cadmium Concentration: Chromium Concentration:	<1.8 mg/kg 60 - 90 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration:	I Chemistry British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg	A13NE (N)	94	4	447807 130064
	Cadmium Concentration: Chromium	<1.8 mg/kg 90 - 120 mg/kg				
	Concentration: Lead Concentration: Nickel Concentration:	<150 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil Source: Soil Sample Type: Arsenic	Chemistry British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg	A13SE (E)	148	4	447996 129884
	Concentration: Cadmium Concentration: Chromium	<1.8 mg/kg 90 - 120 mg/kg				
	Concentration: Lead Concentration: Nickel Concentration:	<150 mg/kg <15 mg/kg				
	BGS Estimated Soil	-				
	Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg	A13SE (E)	152	4	448000 129903
	Cadmium Concentration: Chromium Concentration:	<1.8 mg/kg 60 - 90 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg 15 - 30 mg/kg				

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg	A13SE (E)	152	4	448000 129890
	Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration: Lead Concentration: Nickel	90 - 120 mg/kg <150 mg/kg <15 mg/kg				
	Concentration:					
	BGS Estimated Soil Source: Soil Sample Type:	British Geological Survey, National Geoscience Information Service Sediment	A13NE (NE)	167	4	447993 130000
	Arsenic Concentration: Cadmium	<15 mg/kg <1.8 mg/kg				
	Concentration: Chromium Concentration:	60 - 90 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg	A13NE (NE)	173	4	448000 129997
	Cadmium Concentration: Chromium	<1.8 mg/kg 60 - 90 mg/kg				
	Concentration: Lead Concentration: Nickel					
	Concentration: BGS Estimated Soil	Chamistry				
	Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg	A13NE (NE)	174	4	448000 130000
	Cadmium Concentration: Chromium	<1.8 mg/kg 60 - 90 mg/kg				
	Concentration: Lead Concentration: Nickel	<150 mg/kg 15 - 30 mg/kg				
	Concentration:	Chamiatur				
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg	A13SE (S)	194	4	447832 129648
	Cadmium Concentration: Chromium	<1.8 mg/kg 90 - 120 mg/kg				
	Concentration: Lead Concentration: Nickel Concentration:					
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg	A13NE (NE)	215	4	448000 130093
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration: Lead Concentration:	60 - 90 mg/kg <150 mg/kg				
	Nickel Concentration:	15 - 30 mg/kg				

	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
BGS Estimated Soil	Chemistry				
Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg	A13SE (SE)	218	4	448000 129697
Cadmium Concentration:	<1.8 mg/kg 60 - 90 ma/ka				
Concentration: Lead Concentration: Nickel Concentration:					
BGS Estimated Soil	Chemistry				
Source:	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg	A13NW (W)	273	4	447510 130000
Concentration:					
Concentration: Lead Concentration:	<150 mg/kg				
Nickel Concentration:	15 - 30 mg/kg				
	-				
Arsenic	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg	A14NW (E)	341	4	448180 129963
Cadmium Concentration:	<1.8 mg/kg				
Concentration:					
Nickel Concentration:	<15 mg/kg				
BGS Estimated Soil	Chemistry				
Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg	A14NW (E)	352	4	448181 130000
Cadmium Concentration:	<1.8 mg/kg				
Concentration:					
Nickel Concentration:	<15 mg/kg				
BGS Estimated Soil	Chemistry				
Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg	A14SW (E)	379	4	448214 129784
Concentration:					
Concentration: Lead Concentration:	<150 mg/kg				
Concentration:					
	-				
Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg	A14SW (E)	426	4	448274 129886
Concentration: Cadmium	<1.8 mg/kg				
Chromium Concentration:	60 - 90 mg/kg				
Lead Concentration: Nickel	<150 mg/kg <15 mg/kg				
	Source: Soil Sample Type: Arsenic Concentration: Chromium Concentration: Lead Concentration: Lead Concentration: Lead Concentration: Mickel Concentration: Concentration: Concentration: Concentration: Concentration: Concentration: Lead Concentration: Nickel Concentration: Conc	BOS Estimated Soil Chemistry Source: British Geological Survey, National Geoscience Information Service Soll Sample Type: Sediment Arsenic 15 mg/kg Concentration: Sediment Arsenic 15 mg/kg Concentration: 15 mg/kg Concentration:	Details Compass Direction) BCS Estimated Soil Chemistry Source: British Geological Survey, National Geoscience Information Service Sediment Assenic A135E (SE) Concentration: -15 mg/kg Concentration: 18 mg/kg Concentration: A135E (SE) EdS Estimated Soil Chemistry Source: British Geological Survey, National Geoscience Information Service Source: A138W (W) EdS Estimated Soil Chemistry Source: British Geological Survey, National Geoscience Information Service Source: A138W (W) EdS Estimated Soil Chemistry Source: British Geological Survey, National Geoscience Information Service Source: A138W (W) EdS Estimated Soil Chemistry Concentration: -15 0 mg/kg Concentration: A14NW (E) EdS Estimated Soil Chemistry Source: British Geological Survey, National Geoscience Information Service Source: A14NW (E) EdS Estimated Soil Chemistry Source: British Geological Survey, National Geoscience Information Service Sol Sample Type: A14NW (E) EdS Estimated Soil Chemistry Source: British Geological Survey, National Geoscience Information Service Soil Sample Type: A14NW (E) EdS Estimated Soil Chemistry Source: Source: British Geological Survey, National Geoscience Information Service Soil Sample Type: A14NW (E) EdS Estimated Soil Chemistry S	Details Details Direction (Dompare) Direction (Dompare) BOS Estimated Soil Chemistry Source: Areanic Concentration: 4.18 mg/kg Concentration: 4.18 mg/kg Concentration:	Details References Processor Processor <th< td=""></th<>

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg	A14SW (E)	444	4	448287 129811
	Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration: Lead Concentration:					
	Nickel Concentration:	<15 mg/kg				
	BGS Estimated Soil	l Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg	A14NW (E)	454	4	448287 130000
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	60 - 90 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg <15 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg	A19SW (NE)	512	4	448220 130293
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	60 - 90 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil	l Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg	A8NE (S)	594	4	448021 129277
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	60 - 90 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg	A8NE (SE)	595	4	448067 129293
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	90 - 120 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg <15 mg/kg				
	BGS Estimated Soil	l Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg	A8NE (S)	595	4	448000 129270
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	90 - 120 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg 15 - 30 mg/kg				

Concentration: Cadmium Concentration:	British Geological Survey, National Geoscience Information Service Sediment	A12NE			
Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration:	British Geological Survey, National Geoscience Information Service Sediment				
Cadmium Concentration:	<15 mg/kg	(W)	642	4	447127 130000
Chromium Concentration:	<1.8 mg/kg 90 - 120 mg/kg				
Lead Concentration:	<150 mg/kg 15 - 30 mg/kg				
BGS Estimated Soil	Chemistry				
Arsenic	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg	A9NW (SE)	676	4	448314 129362
Cadmium Concentration:	<1.8 mg/kg				
Concentration:	60 - 90 mg/kg				
Nickel	<150 mg/kg <15 mg/kg				
	Chamistry				
	-	A995	695	4	449000
Soil Sample Type: Arsenic	Sediment <15 mg/kg	(S)	689	4	448000 129177
Cadmium Concentration:	<1.8 mg/kg				
Concentration:					
Lead Concentration: Nickel Concentration:	<150 mg/kg <15 mg/kg				
BGS Estimated Soil	Chemistry				
Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg	A12SW (W)	754	4	447000 129893
Cadmium	<1.8 mg/kg				
Concentration:	90 - 120 mg/kg				
Lead Concentration: Nickel Concentration:	<150 mg/kg 15 - 30 mg/kg				
	Chemistry				
Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg	A12SW (W)	755	4	447000 129895
Cadmium Concentration:	<1.8 mg/kg				
Concentration:	90 - 120 mg/kg				
Lead Concentration: Nickel Concentration:	<150 mg/kg 15 - 30 mg/kg				
BGS Estimated Soil	Chemistry				
Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg	A12SW (W)	755	4	447000 129903
Concentration: Cadmium	<1.8 mg/kg				
Chromium	60 - 90 mg/kg				
Lead Concentration: Nickel	<150 mg/kg 15 - 30 mg/kg				
TO B SSACCCCLTC B SSACCCCLTC B SSACCCCLTC B SSACCCCCLTC B SSACCCCCLTC B SSACCCCCLTC	Nickel Concentration: BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration: Di Sample Type: Arsenic Concentration: Concentration	Nickel 15 - 30 mg/kg Concentration: BCS Estimated Soll Chemistry Source: British Geological Survey, National Geoscience Information Service Sealment - 15 mg/kg Concentration: Cadmium - 1.8 mg/kg Concentration:	Nickel 15 - 30 mg/kg Concentration: BGS Estimated Soil Chemistry Source: British Geological Survey, National Geoscience Information Service Softment 415 mg/kg Concentration: 415 mg/kg Concentration: 415 mg/kg Concentration: 4150 mg/kg Concentration: 4150 mg/kg Concentration: 4150 mg/kg Concentration: 4150 mg/kg Concentration: 4150 mg/kg Concentration: 4150 mg/kg Concentration: 415 mg/kg Concentration: 415 mg/kg Concentration: 415 mg/kg Concentration: 415 mg/kg Concentration: 415 mg/kg Concentration: 415 mg/kg Concentration: 90 - 120 mg/kg Concentration: 415 mg/kg Concentration: 415 mg/kg Concentration: 90 - 120 mg/kg Concentration: 415 mg/kg Concentration: 415 mg/kg Concentration: 415 mg/kg Concentration: 90 - 120 mg/kg Concentration: 415 mg/kg Concentration:	Nickel 15 - 30 mg/kg Concentration: BGS Estimated Sol Chemistry BGS Estimated Sol Chemistry BGS Estimated Sol Chemistry Concentration: C	Nixiel 15 - 30 mg/kg BGS Estimated Soli Chemistry British Gological Survey, National Geoscience Information Service ASWW (SE) 676 4 Mannie <18 mg/kg

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg	A12NW (W)	758	4	447000 129941
	Cadmium Concentration: Chromium	<1.8 mg/kg 90 - 120 mg/kg				
	Concentration: Lead Concentration: Nickel Concentration:					
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg	A12SW (W)	766	4	446988 129890
	Cadmium Concentration: Chromium	<1.8 mg/kg 60 - 90 ma/kg				
	Concentration: Lead Concentration: Nickel	<150 mg/kg 15 - 30 mg/kg				
	Concentration:					
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg	A12NW (W)	767	4	447000 130000
	Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration: Lead Concentration:	90 - 120 mg/kg				
	Nickel Concentration:	15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg	A14SE (E)	813	4	448627 129648
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration: Lead Concentration:	60 - 90 mg/kg <150 ma/ka				
	Nickel Concentration:	15 - 30 mg/kg				
	BGS Estimated Soil	-				
	Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg	A8SE (S)	842	4	447804 129000
	Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration: Lead Concentration:	60 - 90 mg/kg <150 mg/kg				
	Nickel Concentration:	15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg	A8SE (S)	846	4	447920 129000
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	90 - 120 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg <15 mg/kg				

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg	A8SW (S)	851	4	447497 129052
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration: Lead Concentration:	60 - 90 mg/kg <150 mg/kg				
	Nickel Concentration:	15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg	A8SE (S)	858	4	448000 129000
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	90 - 120 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg <15 mg/kg				
	BGS Estimated Soil	Chemistry	1			
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg	A7SE (SW)	861	4	447443 129060
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration: Lead Concentration:	60 - 90 mg/kg				
	Nickel Concentration:	15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg	A8SW (S)	865	4	447628 129000
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration: Lead Concentration:	60 - 90 mg/kg <150 mg/kg				
	Nickel Concentration:	15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg	A14SE (E)	873	4	448711 129748
	Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration: Lead Concentration:	60 - 90 mg/kg				
	Nickel Concentration:	15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg	A18NW (N)	905	4	447482 130823
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	60 - 90 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg 15 - 30 mg/kg				

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg	A9NE (SE)	905	4	448636 129415
	Cadmium Concentration: Chromium Concentration: Lead Concentration:	<1.8 mg/kg 90 - 120 mg/kg <150 mg/kg				
	Nickel Concentration:	<15 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg	A7SE (SW)	918	4	447303 129064
	Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration: Lead Concentration:	90 - 120 mg/kg <150 mg/kg				
	Nickel Concentration:	15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg	A9SW (SE)	923	4	448380 129095
	Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration: Lead Concentration:	60 - 90 mg/kg				
	Nickel Concentration:	<15 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg	A9NE (SE)	925	4	448636 129374
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration: Lead Concentration:	90 - 120 mg/kg				
	Nickel Concentration:	<15 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg	A8SW (S)	927	4	447610 128944
	Cadmium Concentration: Chromium	<1.8 mg/kg 60 - 90 mg/kg				
	Concentration: Lead Concentration:					
	Nickel Concentration:	15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg	A7SE (SW)	949	4	447360 129000
	Concentration: Cadmium	<1.8 mg/kg				
	Concentration: Chromium Concentration:	90 - 120 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg 15 - 30 mg/kg				

	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
BGS Estimated Soil	Chemistry				
Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg	A9SW (SE)	955	4	448295 129004
Cadmium Concentration: Chromium	<1.8 mg/kg 90 - 120 mg/kg				
Concentration: Lead Concentration: Nickel Concentration:	<150 mg/kg <15 mg/kg				
BGS Estimated Soil	Chemistry				
Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg	A9SW (SE)	956	4	448291 129000
Cadmium Concentration: Chromium					
	<150 mg/kg				
Concentration:	<15 mg/kg				
BGS Estimated Soil	Chemistry				
Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg	A9SW (SE)	959	4	448296 129000
Cadmium Concentration:	<1.8 mg/kg				
Concentration:					
Nickel Concentration:	<15 mg/kg				
BGS Estimated Soil	Chemistry				
Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg	A18NW (N)	974	4	447474 130893
Cadmium Concentration:	<1.8 mg/kg				
Concentration:	5.5				
Nickel Concentration:	15 - 30 mg/kg				
BGS Estimated Soil	Chemistry				
Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg	A15SW (E)	974	4	448822 129870
Cadmium Concentration: Chromium	<1.8 mg/kg 60 - 90 ma/ka				
Concentration: Lead Concentration:	<150 mg/kg				
Nickel Concentration:	15 - 30 mg/kg				
BGS Estimated Soil	Chemistry				
Source: Soil Sample Type:	British Geological Survey, National Geoscience Information Service Sediment	A9NE (SE)	975	4	448679 129350
Concentration: Cadmium	<1.8 mg/kg				
Concentration: Chromium Concentration:	60 - 90 mg/kg				
	<150 mg/kg 15 - 30 mg/kg				
	Source: Soil Sample Type: Arsenic Concentration: Chromium Concentration: Lead Concentration: Lead Concentration: Mickel Concentration: Concentration: Concentration: Concentration: Concentration: Concentration: Concentration: Lead Concentration: Nickel Concentration: Lead Concentration: Nickel Concentration: Lead Concentration: Concent	BCS Estimated Soil Chemistry Source: British Geological Survey, National Geoscience Information Service Soil Sample Type: Sediment Concentration: 15 mg/kg Concentration: 150 mg/kg Concentration: 15 mg/kg Concentration: 150 mg/kg	Bots Entities References Direction) BCS Estimated Soil Chemistry Source: Bittish Geological Survey, National Geoscience Information Service Soil Sample Type: Sediment ASSW (SE) Arsenic -15 mg/kg Concentration: -13 mg/kg Concentration: ASSW (SE) Concentration: -13 mg/kg Concentration: -13 mg/kg Concentration: ASSW (SE) Ead Concentration: -13 mg/kg Concentration: -13 mg/kg Concentration: ASSW (SE) Source: British Geological Survey, National Geoscience Information Service Concentration: ASSW (SE) Concentration: -15 mg/kg Concentration: -15 mg/kg Concentration: ASSW (SE) Concentration: -15 mg/kg Concentration: -15 mg/kg Concentration: ASSW (SE) Edd Concentration: -15 mg/kg Concentration: -15 mg/kg Concentration: ASSW (SE) Edd Concentration: -15 mg/kg Concentration: -15 mg/kg Concentration: ASSW (SE) Edd Setimated Soil Chemistry Source: British Geological Survey, National Geoscience Information Service Source: ASSW (SE) Edd Concentration: -15 mg/kg Concentration: -15 mg/kg Concentration: -15 mg/kg Concentration: Edd Setimated Soil Chemi	DetailsReference, Compass Compassion DirectionPetitated Direction805 Estimated Soil Chemistry Source: Conduntion Concentration: Concentration: Concentration: Concentration: Source: Concentration: Source: Concentration: Source: Sou	Details Reference Direction Estimate Prom Stel Contact Prom Stel Source American A

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Estimated Soil Source:	Chemistry British Geological Survey, National Geoscience Information Service Sediment	A7SE	993	4	447264
	Soil Sample Type: Arsenic Concentration:	<15 mg/kg	(SW)			129000
	Cadmium Concentration: Chromium	<1.8 mg/kg 60 - 90 mg/kg				
	Concentration: Lead Concentration:					
	Nickel Concentration:	15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg	A3NE (S)	997	4	447814 128846
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration: Lead Concentration:	90 - 120 mg/kg				
	Nickel Concentration:	<15 mg/kg				
	BGS Measured Urba	an Soil Chemistry				
	BGS Urban Soil Che	emistry Averages				
		d Anna				
	Coal Mining Affecte In an area that might	not be affected by coal mining				
	Man-Made Mining C	cavities				
	Easting:	447800	A13NW	32	5	447800
	Northing: Distance:	130000 32	(N)			130000
	Quadrant Reference:	A13				
	Quadrant Reference: Bearing Ref:	NW N				
	Cavity Type:	Possible Voids-During Piling Operations				
	Commodity: Solid Geology Detail:	Chalk Chalk Group				
	Superficial Geology Detail:					
	Man-Made Mining C					
	Easting: Northing:	448000 129800	A13SE (SE)	168	5	448000 129800
	Distance:	168	(35)			123000
	Quadrant Reference: Quadrant Reference:					
	Bearing Ref:	SE				
	Cavity Type: Commodity:	Possible Voids-During Piling Operations Chalk				
	Solid Geology Detail:	: Chalk Group				
	Superficial Geology Detail:	River Terrace Deposits				
	Man-Made Mining C					
	Easting: Northing:	447900 129500	A8NE (S)	348	5	447900 129500
	Distance:	348	(0)			123300
	Quadrant Reference: Quadrant Reference:					
	Bearing Ref:	S				
	Cavity Type: Commodity:	Possible Voids-During Piling Operations Chalk				
	Solid Geology Detail:	: Chalk Group				
1	Superficial Geology	No Details				

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Natural Cavities Easting: 448400 Northing: 130500 Distance: 784 Quadrant Reference: A19 Quadrant Reference: SW Bearing Ref: NE Cavity Type: Solution Pipe x 10 Solid Geology Detail: Upper Chalk Formation Superficial Geology Alluvium, River Terrace Deposits Detail: Vertice	A19SW (NE)	784	5	448400 130500
	Non Coal Mining Areas of Great Britain Risk: Rare Source: British Geological Survey, National Geoscience Information Service	A13SE (SE)	0	3	447804 129903
	Non Coal Mining Areas of Great Britain Risk: Rare Source: British Geological Survey, National Geoscience Information Service	A13NE (N)	28	3	447804 129998
	Non Coal Mining Areas of Great Britain Risk: Highly Unlikely Source: British Geological Survey, National Geoscience Information Service	A13NE (N)	52	3	447811 130021
	Non Coal Mining Areas of Great Britain Risk: Rare Source: British Geological Survey, National Geoscience Information Service	A13NE (N)	92	3	447807 130062
	Non Coal Mining Areas of Great Britain Risk: Highly Unlikely Source: British Geological Survey, National Geoscience Information Service	A13SE (E)	152	3	448000 129873
	Non Coal Mining Areas of Great Britain Risk: Highly Unlikely Source: British Geological Survey, National Geoscience Information Service	A13NE (NE)	167	3	447993 129998
	Potential for Collapsible Ground Stability Hazards Hazard Potential: Very Low Source: British Geological Survey, National Geoscience Information Service	A13SE (SE)	0	3	447804 129903
	Potential for Collapsible Ground Stability Hazards Hazard Potential: Very Low Source: British Geological Survey, National Geoscience Information Service	A13NE (N)	28	3	447804 129998
	Potential for Compressible Ground Stability Hazards Hazard Potential: No Hazard Source: British Geological Survey, National Geoscience Information Service	A13SE (SE)	0	3	447804 129903
	Potential for Compressible Ground Stability Hazards Hazard Potential: No Hazard Source: British Geological Survey, National Geoscience Information Service	A13NE (N)	28	3	447804 129998
	Potential for Compressible Ground Stability Hazards Hazard Potential: Very Low Source: British Geological Survey, National Geoscience Information Service	A13SE (E)	226	3	448074 129893
	Potential for Ground Dissolution Stability Hazards Hazard Potential: Very Low Source: British Geological Survey, National Geoscience Information Service	A13SE (SE)	0	3	447804 129903
	Potential for Ground Dissolution Stability Hazards Hazard Potential: Very Low Source: British Geological Survey, National Geoscience Information Service	A13NE (N)	28	3	447804 129998
	Potential for Ground Dissolution Stability Hazards Hazard Potential: Low Source: British Geological Survey, National Geoscience Information Service	A13NE (N)	52	3	447811 130021
	Potential for Ground Dissolution Stability Hazards Hazard Potential: Very Low Source: British Geological Survey, National Geoscience Information Service	A13NE (N)	92	3	447807 130062
	Potential for Ground Dissolution Stability Hazards Hazard Potential: Low Source: British Geological Survey, National Geoscience Information Service	A13SE (E)	148	3	447996 129882
	Potential for Ground Dissolution Stability Hazards Hazard Potential: Low Source: British Geological Survey, National Geoscience Information Service	A13NE (NE)	167	3	447993 129998
	Potential for Landslide Ground Stability Hazards Hazard Potential: No Hazard Source: British Geological Survey, National Geoscience Information Service	A13SE (SE)	0	3	447804 129903

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Potential for Landslide Ground Stability Hazards					
	Hazard Potential: Source:	No Hazard British Geological Survey, National Geoscience Information Service	A13NE (N)	28	3	447804 129998
	Potential for Lands Hazard Potential:	lide Ground Stability Hazards Very Low	A13NE	52	3	447811
	Source:	British Geological Survey, National Geoscience Information Service	(N)	52	3	130021
	Potential for Lands Hazard Potential:	lide Ground Stability Hazards		02	2	447007
	Source:	No Hazard British Geological Survey, National Geoscience Information Service	A13NE (N)	92	3	447807 130062
		lide Ground Stability Hazards				
	Hazard Potential: Source:	Very Low British Geological Survey, National Geoscience Information Service	A13SE (E)	148	3	447996 129882
	Potential for Lands	lide Ground Stability Hazards				
	Hazard Potential: Source:	Very Low British Geological Survey, National Geoscience Information Service	A13NE (NE)	167	3	447993 129998
	Potential for Lands	lide Ground Stability Hazards				
	Hazard Potential: Source:	Very Low British Geological Survey, National Geoscience Information Service	A13SE (E)	226	3	448074 129893
	Potential for Runni	ng Sand Ground Stability Hazards				
	Hazard Potential: Source:	No Hazard British Geological Survey, National Geoscience Information Service	A13SE (SE)	0	3	447804 129903
	Potential for Runni	ng Sand Ground Stability Hazards				
	Hazard Potential: Source:	No Hazard British Geological Survey, National Geoscience Information Service	A13NE (N)	28	3	447804 129998
	Potential for Runni	ng Sand Ground Stability Hazards				
	Hazard Potential: Source:	Very Low British Geological Survey, National Geoscience Information Service	A13NE (N)	52	3	447811 130021
	Potential for Runni	ng Sand Ground Stability Hazards				
	Hazard Potential: Source:	No Hazard British Geological Survey, National Geoscience Information Service	A13NE (N)	92	3	447807 130062
	Potential for Runni	ng Sand Ground Stability Hazards				
	Hazard Potential: Source:	Very Low British Geological Survey, National Geoscience Information Service	A13SE (E)	148	3	447996 129882
	Potential for Runni	ng Sand Ground Stability Hazards				
	Hazard Potential: Source:	Very Low British Geological Survey, National Geoscience Information Service	A13NE (NE)	167	3	447993 129998
	Potential for Runni	ng Sand Ground Stability Hazards				
	Hazard Potential: Source:	Very Low British Geological Survey, National Geoscience Information Service	A13SE (E)	226	3	448074 129893
	Potential for Shrink	ing or Swelling Clay Ground Stability Hazards				
	Hazard Potential: Source:	No Hazard British Geological Survey, National Geoscience Information Service	A13SE (SE)	0	3	447804 129903
	Potential for Shrink	ing or Swelling Clay Ground Stability Hazards				
	Hazard Potential: Source:	No Hazard British Geological Survey, National Geoscience Information Service	A13NE (N)	28	3	447804 129998
		ing or Swelling Clay Ground Stability Hazards	(11)			120000
	Hazard Potential: Source:	Very Low British Geological Survey, National Geoscience Information Service	A13NE (N)	52	3	447811 130021
		ing or Swelling Clay Ground Stability Hazards	()			
	Hazard Potential: Source:	No Hazard British Geological Survey, National Geoscience Information Service	A13NE	92	3	447807 130062
		ing or Swelling Clay Ground Stability Hazards	(N)			130002
	Hazard Potential: Source:	Very Low British Geological Survey, National Geoscience Information Service	A13NE (NE)	167	3	447993 129998
		adon Protection Measures	(112)			.20000
		No radon protective measures are necessary in the construction of new dwellings or extensions	A13SE (SE)	0	3	447804 129903
	Source:	British Geological Survey, National Geoscience Information Service	(32)			
		adon Affected Areas				
	Affected Area:	The property is in a lower probability radon area, as less than 1% of homes are above the action level	A13SE (SE)	0	3	447804 129903

Industrial Land Use

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
55	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Andrew Foster Station Garage, Stockbridge Road, Winchester, Hampshire, SO22 6RF Mot Testing Centres Active Automatically positioned to the address	A13NW (NW)	54	-	447730 129973
55	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Aztec Trading Station Garage, Stockbridge Road, Winchester, Hampshire, SO22 6RF Car Dealers - Used Inactive Manually positioned to the address or location	A13NW (NW)	54	-	447730 129973
56	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Winchester Cars & Campers 23, City Road, Winchester, Hampshire, SO23 8SD Car Dealers - Used Inactive Automatically positioned to the address	A13SE (E)	58	-	447906 129896
56	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Winchester Tyre & Exhausts 23, City Road, Winchester, Hampshire, SO23 8SD Exhaust & Shock Absorber Centres Inactive Automatically positioned to the address	A13SE (E)	58	-	447906 129896
56	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries A H F Auto Ltd 12, City Road, Winchester, Hampshire, SO23 8SG Car Dealers Inactive Automatically positioned to the address	A13NE (E)	96	-	447936 129923
56	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Chessington Tyres Ltd City Road, Winchester, Hampshire, SO23 8SD Tyre Dealers Inactive Automatically positioned to the address	A13NE (E)	103	-	447947 129917
56	Contemporary Trad Name: Location: Classification: Status:		A13NE (E)	124	-	447970 129907
57	Contemporary Trad Name: Location: Classification: Status:		A13NW (NW)	164	-	447688 130101
57	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries The Iron-Works 2, Fairfield Road, Winchester, Hampshire, SO22 6SF Ironing & Home Laundry Services Inactive Automatically positioned to the address	A13NW (NW)	206	-	447660 130134
58	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Vital Resources Andover Road, WINCHESTER, Hampshire, SO23 7BT Railways Inactive Manually positioned to the road within the address or location	A13NE (N)	195	-	447870 130152
58	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Market Service Station Andover Road, Winchester, Hampshire, SO23 7BT Petrol Filling Stations - 24 Hour Inactive Automatically positioned to the address	A13NE (N)	228	-	447843 130191
58	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Direct Feeds Andover Road, Winchester, Hampshire, SO23 7BT Pet Foods & Animal Feeds Inactive Automatically positioned to the address	A13NE (N)	244	-	447884 130199

Industrial Land Use

Map ID	Details		Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
59	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries The Printing Shop 1, De Lunn Buildings, Jewry Street, Winchester, Hampshire, SO23 8SA Printers Inactive Automatically positioned to the address	A13SE (E)	207	-	448044 129810
59	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Konica Minolta Ltd Canister House, 27, Jewry Street, Winchester, Hampshire, SO23 8RY Photocopiers Inactive Automatically positioned to the address	A13SE (E)	228	-	448062 129797
59	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Konica Minolta Cannister House, 27, Jewry Street, Winchester, Hampshire, SO23 8RY Photocopiers Inactive Automatically positioned to the address	A13SE (E)	228	-	448062 129797
59	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Crondall Energy Consultants Ltd Canister House, 27, Jewry Street, Winchester, Hampshire, SO23 8RY Oil & Gas Exploration Supplies & Services Active Manually positioned to the address or location	A13SE (E)	228	-	448062 129797
60	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Orange Chemicals Ltd 8, Upper High Street, Winchester, Hampshire, SO23 8UT Chemicals - Distributors & Wholesalers Active Automatically positioned to the address	A13SW (S)	220	-	447718 129645
61	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Adrian Marks 37, Clifton Road, Winchester, Hampshire, SO22 5BU Antiques - Repairing & Restoring Inactive Automatically positioned to the address	A13SW (W)	225	-	447531 129889
62	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Servicemaster - Winchester & Salisbury Worthy La, Winchester, Hampshire, SO23 7AB Commercial Cleaning Services Active Manually positioned to the road within the address or location	A13NE (NE)	231	-	447964 130150
63	Contemporary Trad Name: Location: Classification: Status:		A13NE (E)	240	-	448066 130007
63	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Air Improve Ltd 4, City Business Centre, Hyde Street, Winchester, Hampshire, SO23 7TA Air Conditioning Equipment & Systems Active Automatically positioned to the address	A13NE (E)	259	-	448092 129971
63	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries The Passive Revolution Ltd 25, City Business Centre, Hyde Street, Winchester, Hampshire, SO23 7TA Road Haulage Services Inactive Automatically positioned to the address	A13NE (E)	279	-	448119 129955
63	Contemporary Trad Name: Location: Classification: Status:		A13NE (E)	296	-	448137 129951
64	Contemporary Trad Name: Location: Classification: Status:		A13NE (NE)	254	-	448074 130034

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
64	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Hampshire Scrap Metal Removal Flat 8, Alleyne House, 25, Hyde Street, Winchester, Hampshire, SO23 7DR Scrap Metal Merchants Active Automatically positioned to the address	A13NE (NE)	260	-	448075 130049
65	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Mini Menus 80, High Street, Winchester, Hampshire, SO23 9AT Food Products - Manufacturers Inactive Automatically positioned to the address	A13SE (S)	264	-	447859 129579
65	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Polybrite Ltd 80, High Street, Winchester, Hampshire, SO23 9AT Commercial Cleaning Services Active Automatically positioned to the address	A13SE (S)	264	-	447859 129579
65	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Chipsaway 80, High Street, Winchester, Hampshire, SO23 9AT Car Body Repairs Inactive Automatically positioned to the address	A13SE (S)	264	-	447859 129579
65	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Aloe Enterprises Ltd 80, High Street, Winchester, Hampshire, SO23 9AT Animal By-Products Inactive Manually positioned to the address or location	A13SE (S)	264	-	447859 129579
66	Contemporary Trad Name: Location: Classification: Status:		A13NW (W)	268	-	447494 129929
67	Contemporary Trad Name: Location: Classification: Status:		A13SE (SE)	271	-	448097 129761
67	Contemporary Trad Name: Location: Classification: Status:		A13SE (SE)	279	-	448106 129768
68	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Martin Swain 2, Elm Road, Winchester, Hampshire, SO22 5AG Soft Furnishings - Manufacturers Inactive Automatically positioned to the address	A13NW (W)	285	-	447476 129924
68	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Appliance Services 1b, Stockbridge Road, Winchester, Hampshire, SO22 6RN Washing Machines - Servicing & Repairs Active Automatically positioned to the address	A13NW (W)	304	-	447470 129973
68	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Five Star 5, Stockbridge Road, Winchester, Hampshire, SO22 6RN Dry Cleaners Active Automatically positioned to the address	A12NE (W)	324	-	447452 129983
68	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Standrin 4, Red Deer Court, Elm Road, Winchester, Hampshire, SO22 5LX Antiques - Repairing & Restoring Inactive Automatically positioned to the address	A12NE (W)	346	-	447422 129960

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
69	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Copying Centre Ltd 11, Charlecote Mews, Staple Gardens, Winchester, Hampshire, SO23 8SR Copying & Duplicating Services Inactive Automatically positioned to the address	A13SE (SE)	289	-	447991 129597
70	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Copyman 41-43, Jewry Street, Winchester, Hampshire, SO23 8RY Printers Active Automatically positioned to the address	A13SE (SE)	291	-	448037 129629
71	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries John Gould 12, Hatherley Road, Winchester, Hampshire, SO22 6RT Antiques - Repairing & Restoring Active Automatically positioned to the address	A13NW (NW)	313	-	447573 130199
72	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries Sketchley Retail Ltd 8, St. Georges Street, Winchester, Hampshire, SO23 8BG Dry Cleaners Inactive Automatically positioned to the address	A13SE (SE)	337	-	448038 129570
72	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries Supasnaps 8, St. Georges Street, Winchester, Hampshire, SO23 8BG Photographic Processors Inactive Automatically positioned to the address	A13SE (SE)	337	-	448038 129570
72	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries Dataflex Design & Communication Ltd St. Georges House, St. Georges Street, Winchester, Hampshire, SO23 8BG Telecommunications Equipment & Systems Inactive Manually positioned to the address or location	A8NE (SE)	355	-	448054 129561
73	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries Modern Times 5, Red Deer Court, Elm Road, Winchester, Hampshire, SO22 5LX Cycle Accessories, Manufacturers & Wholesalers Inactive Manually positioned to the address or location	A12NE (W)	358	-	447417 129984
73	Contemporary Trad Name: Location: Classification: Status:		A12NE (W)	369	-	447412 130006
73	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries Direct Denter Care Centres 23, Stockbridge Road, Winchester, Hampshire, SO22 6RN Medical & Dental Laboratories Inactive Automatically positioned to the address	A12NE (W)	374	-	447407 130008
74	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Cnc Regrinding 58b, Brassey Road, Winchester, Hampshire, SO22 6SB Engineers - General Inactive Automatically positioned to the address	A18SW (N)	367	-	447778 130337
75	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries Tlc Cleaning 79, North Walls, Winchester, Hampshire, SO23 8DA Cleaning Services - Domestic Inactive Automatically positioned to the address	A14SW (E)	373	-	448210 129794
76	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries Bonusprint 98, High Street, Winchester, Hampshire, SO23 9AH Photographic Processors Inactive Automatically positioned to the address	A8NE (SE)	379	-	448029 129515

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
76	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Currys Digital 53-54, High Street, Winchester, Hampshire, SO23 9BX Electrical Goods Sales, Manufacturers & Wholesalers Inactive Automatically positioned to the address	A8NE (SE)	387	-	448020 129501
76	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Lacewing Fine Art 28, St. Thomas Street, Winchester, Hampshire, SO23 9HJ Art Restoration & Picture Cleaning Inactive Automatically positioned to the address	A8NE (SE)	423	-	448020 129460
77	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries B E Chaplin Gunmakers Ltd 6, Southgate Street, Winchester, Hampshire, SO23 9EF Gunsmiths Active Automatically positioned to the address	A8NE (S)	383	-	447930 129471
77	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Cd Revolution 2000 Ltd 13, Southgate Street, Winchester, Hampshire, SO23 9DZ Distribution Services Inactive Automatically positioned to the address	A8NE (S)	413	-	447952 129446
77	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries New Concept 15, Southgate Street, Winchester, Hampshire, SO23 9DZ Lifting Equipment Inactive Automatically positioned to the address	A8NE (S)	417	-	447948 129440
77	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries United Carpet Cleaning Masters 17 Southgate St, Winchester, Hampshire, SO23 9AA Carpet, Curtain & Upholstery Cleaners Inactive Manually positioned to the address or location	A8NE (S)	422	-	447946 129434
78	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Gen A Cis Power House, Gordon Road, Winchester, Hampshire, SO23 7DD Marine Equipment & Supplies Inactive Automatically positioned to the address	A14SW (E)	410	-	448256 129841
78	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Turnpike Machinery Ltd Power Ho,2 Gordon Rd, Winchester, Hampshire, SO23 7DD Printing Equipment Manufacturers Inactive Manually positioned to the address or location	A14SW (E)	410	-	448256 129840
79	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries D & G Hardware 42-44, St. Georges Street, Winchester, Hampshire, SO23 8BE Hardware Active Automatically positioned to the address	A8NE (SE)	417	-	448130 129545
79	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries The Clock Work Shop A, 6, Parchment Street, Winchester, Hampshire, SO23 8AT Antiques - Repairing & Restoring Inactive Automatically positioned to the address	A9NW (SE)	427	-	448150 129551
80	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Wtspc Ltd 24, Western Road, Winchester, Hampshire, SO22 5AJ Printers Textile Active Automatically positioned to the address	A12SE (W)	456	-	447299 129895
81	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Ham Hill Stone Co Ltd The 19, Cheriton Road, Winchester, Hampshire, SO22 5EQ Quarries Inactive Automatically positioned to the address	A12SE (W)	467	-	447296 129772

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
82	Contemporary Trad Name: Location: Classification: Status:	e Directory Entries Medisafe Ltd Westgate House, 39-41, Romsey Road, Winchester, Hampshire, SO22 5BE Medical Equipment Maintenance & Repairs Inactive	A8NW (SW)	475	-	447464 129488
83	Contemporary Trad Name: Location: Classification: Status:	Johnson'S Cleaners (Uk) Ltd 66, St. Georges Street, Winchester, Hampshire, SO23 8AH Dry Cleaners Inactive	A9NW (SE)	483	-	448200 129523
83	Contemporary Trad Name: Location: Classification: Status:	Automatically positioned to the address e Directory Entries Gervades 7, Upper Brook Street, Winchester, Hampshire, SO23 8AL Dry Cleaners Active Automatically positioned to the address	A9NW (SE)	505	-	448222 129515
84	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Liquid Technologies International 29, Southgate Street, Winchester, Hampshire, SO23 9EB Marine Equipment & Supplies Inactive Automatically positioned to the address	A8NE (S)	486	-	447920 129364
85	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Saxons Of Winchester 23, The Square, Winchester, Hampshire, SO23 9EX Furniture - Reproduction Inactive Automatically positioned to the address	A8NE (SE)	488	-	448098 129429
86	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Mccoy Hill McCoy Hill House, Upper Brook St, Winchester, Hampshire, SO23 8DF Damp & Dry Rot Control Inactive Manually positioned to the road within the address or location	A14SW (SE)	493	-	448250 129572
87	Contemporary Trad Name: Location: Classification: Status:		A18SW (N)	511	-	447735 130478
88	Contemporary Trad Name: Location: Classification: Status:		A9NW (SE)	522	-	448205 129472
89	Contemporary Trad Name: Location: Classification: Status:		A8NE (S)	539	-	447910 129309
90	Contemporary Trad Name: Location: Classification: Status:		A8NW (S)	607	-	447786 129237
91	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Heritage Blinds 61, North Walls, Winchester, Hampshire, SO23 8DP Blinds, Awnings & Canopies Inactive Automatically positioned to the address	A14SW (E)	615	-	448441 129717

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
92	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Southgate Peugeot 2-4, St. Cross Road, Winchester, Hampshire, SO23 9HY Mot Testing Centres Inactive Automatically positioned to the address	A8SE (S)	617	-	447848 129225
93	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Winchester Commercials Ltd 12, Bereweeke Way, Winchester, Hampshire, SO22 6BJ Commercial Vehicle Dealers Active Automatically positioned to the address	A17SE (NW)	709	-	447361 130538
94	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Novatrans Uk Ltd Radley House, 8, St. Cross Road, Winchester, Hampshire, SO23 9HX Freight Forwarders Active Automatically positioned to the address	A8SE (S)	732	-	447817 129111
95	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries A Touch Of Class Andover Road, Winchester, Hampshire, SO22 7BS Dry Cleaners Active Manually positioned to the road within the address or location	A18NW (N)	812	-	447598 130760
96	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Trevor'S Auto Electrical Repairs 18, Nursery Gardens, Winchester, Hampshire, SO22 5DT Garage Services Inactive Automatically positioned to the address	A7NW (SW)	828	-	447006 129510
97	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries T Wiltshire 11, College Street, Winchester, Hampshire, SO23 9LZ Bookbinding & Equipment Active Automatically positioned to the address	A9SW (SE)	863	-	448164 129044
98	Contemporary Trad Name: Location: Classification: Status:		A7NW (SW)	877	-	446991 129431
99	Contemporary Trad Name: Location: Classification: Status:		A9NE (SE)	893	-	448567 129327
99	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Eagle International 170, High Street, Winchester, Hampshire, SO23 9BQ Manufacturers Inactive Manually positioned to the address or location	A9NE (SE)	912	-	448582 129316
100	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Royal Hampshire County Hospital Romsey Road, Winchester, Hampshire, SO22 5DG Hospitals Inactive Automatically positioned to the address	A7NW (SW)	940	-	446982 129328
100	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Winchester & Eastleigh Healthcare Nhs Trust Romsey Road, Winchester, Hampshire, SO22 5DG Hospitals Inactive Automatically positioned to the address	A7NW (SW)	940	-	446982 129328
100	Contemporary Trad Name: Location: Classification: Status:		A7NW (SW)	940	-	446982 129328

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
100	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries Winchester & Eastleigh Healthcare Nhs Trust Romsey Road, Winchester, Hampshire, SO22 5DG Hospitals Inactive Automatically positioned to the address	A7NW (SW)	940	-	446982 129328
100	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries Winchester & Eastleigh Healthcare Nhs Trust Romsey Road, WINCHESTER, Hampshire, SO22 5DG Hospitals Inactive Automatically positioned to the address	A7NW (SW)	940	-	446982 129328
100	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries Royal Hampshire County Hospital Romsey Road, Winchester, Hampshire, SO22 5DG Hospitals Active Automatically positioned to the address	A7NW (SW)	940	-	446982 129328
101	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries Winchester & Eastleigh Healthcare Nhs Trust Romsey Rd, Winchester, Hampshire, SO22 5DG Hospitals Inactive Manually positioned to the road within the address or location	A7NW (SW)	953	-	446926 129392
102	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Gradko International Ltd 77, Wales Street, Winchester, Hampshire, SO23 0RH Scientific Apparatus & Instruments - Manufacturers Active Automatically positioned to the address	A15NW (E)	986	-	448834 129914
103	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries J Darlison 13, Byron Avenue, Winchester, Hampshire, SO22 5AT Commercial Cleaning Services Active Automatically positioned to the address	A11SE (W)	988	-	446777 129720
104	Fuel Station Entries Name: Location: Brand: Premises Type: Status: Positional Accuracy:	A H F Auto Swan Lane, WINCHESTER, Hampshire, SO23 8SG Obsolete Not Applicable Obsolete Approximate location provided by supplier	A13NE (NE)	207	-	448030 130017
105	Fuel Station Entries Name: Location: Brand: Premises Type: Status: Positional Accuracy:	Market Winchester Express Andover Road, Winchester, Hampshire, SO23 7BT ESSO Petrol Station Open Manually positioned to the address or location	A13NE (N)	228	-	447843 130191
106	Fuel Station Entries Name: Location: Brand: Premises Type: Status: Positional Accuracy:	Fulflood Service Station 63 Stockbridge Road, WINCHESTER, Hampshire, SO22 6RP OBSOLETE Not Applicable Obsolete Approximate location provided by supplier	A12NE (NW)	618	-	447230 130240

Sensitive Land Use

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
107	National Parks Name: Multiple Area: Area (m2): Source: Status: Designation Date:	South Downs N 1652679314.31 Natural England Fully Designated - designated as a National Park 2nd November 2009	A14NE (E)	630	6	448477 129928
108	Nitrate Vulnerable Z Name: Description: Source:	Zones Not Supplied NVZ Area Department for Environment, Food and Rural Affairs (DEFRA - formerly FRCA)	A13SE (SE)	0	7	447804 129903
109	Sites of Special Sci Name: Multiple Areas: Total Area (m2): Source: Reference: Designation Details: Designation Date: Date Type:	entific Interest River Itchen Y 7485005.15 Natural England 2000227 Special Area Of Conservation 16th August 2000 Notified	A14NE (E)	642	6	448489 129927
110	Special Areas of Co Name: Multiple Areas: Total Area (m2): Source: Reference: Status:	nservation River Itchen Y 3039927.78 Natural England UK0012599 Designated	A14SE (E)	800	6	448612 129643

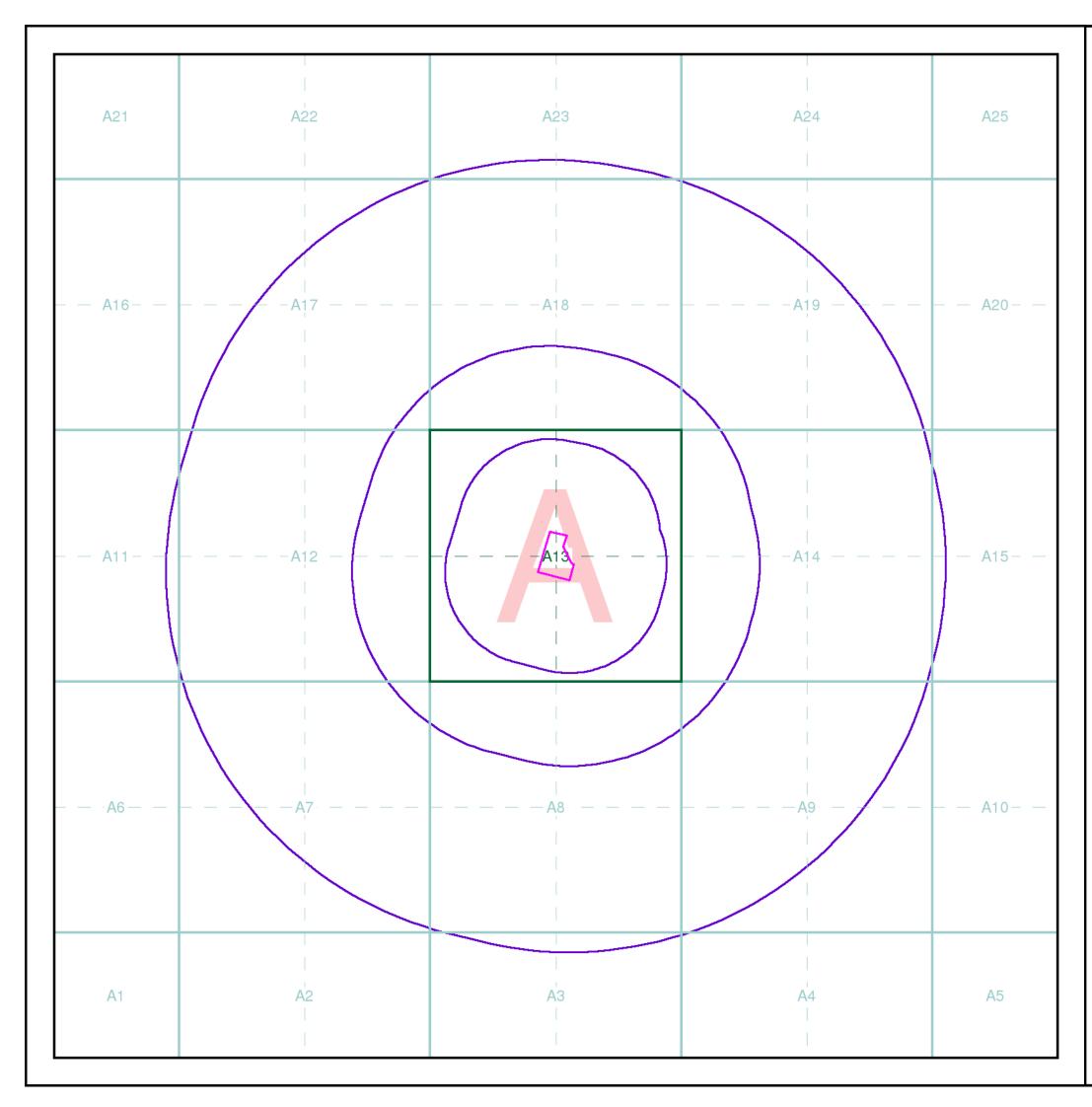
Agency & Hydrological	Version	Update Cycle
Contaminated Land Register Entries and Notices Winchester City Council - Environmental Health Department Test Valley Borough Council - Housing, Health & Communities Service	January 2013 September 2012	Annual Rolling Update Annual Rolling Update
Discharge Consents Environment Agency - Southern Region	July 2013	Quarterly
Enforcement and Prohibition Notices Environment Agency - Southern Region	March 2013	As notified
Integrated Pollution Controls Environment Agency - Southern Region	October 2008	Not Applicable
Integrated Pollution Prevention And Control Environment Agency - Southern Region	July 2013	Quarterly
Local Authority Integrated Pollution Prevention And Control Winchester City Council - Environmental Health Department Test Valley Borough Council - Housing, Health & Communities Service	April 2013 January 2013	Annual Rolling Update Annual Rolling Update
Local Authority Pollution Prevention and Controls Winchester City Council - Environmental Health Department Test Valley Borough Council - Housing, Health & Communities Service Local Authority Pollution Prevention and Control Enforcements	April 2013 January 2013	Annual Rolling Update Annual Rolling Update
Winchester City Council - Environmental Health Department Test Valley Borough Council - Housing, Health & Communities Service	April 2013 January 2013	Annual Rolling Update Annual Rolling Update
Nearest Surface Water Feature Ordnance Survey	July 2012	Quarterly
Pollution Incidents to Controlled Waters Environment Agency - Southern Region	December 1999	Not Applicable
Prosecutions Relating to Authorised Processes Environment Agency - Southern Region	March 2013	As notified
Prosecutions Relating to Controlled Waters Environment Agency - Southern Region Registered Radioactive Substances	March 2013	As notified
Environment Agency - Southern Region River Quality	July 2013	Quarterly
Environment Agency - Head Office River Quality Biology Sampling Points	November 2001	Not Applicable
Environment Agency - Head Office River Quality Chemistry Sampling Points	July 2012	Annually
Environment Agency - Head Office Substantiated Pollution Incident Register	July 2012	Annually
Environment Agency - Southern Region - Hampshire and Isle of Wight Area Office Environment Agency - Southern Region - Solent and South Downs	July 2013 July 2013	Quarterly Quarterly
Water Abstractions Environment Agency - Southern Region	July 2013	Quarterly
Water Industry Act Referrals Environment Agency - Southern Region	July 2013	Quarterly
Groundwater Vulnerability Environment Agency - Head Office	January 2011	Not Applicable
Drift Deposits Environment Agency - Head Office	January 1999	Not Applicable
Bedrock Aquifer Designations British Geological Survey - National Geoscience Information Service	October 2012	Annually
Superficial Aquifer Designations British Geological Survey - National Geoscience Information Service	October 2012	Annually

Agency & Hydrological	Version	Update Cycle
Source Protection Zones Environment Agency - Head Office	July 2013	Quarterly
Extreme Flooding from Rivers or Sea without Defences Environment Agency - Head Office	August 2013	Quarterly
Flooding from Rivers or Sea without Defences Environment Agency - Head Office	August 2013	Quarterly
Areas Benefiting from Flood Defences Environment Agency - Head Office	August 2013	Quarterly
Flood Water Storage Areas Environment Agency - Head Office	August 2013	Quarterly
Flood Defences Environment Agency - Head Office	August 2013	Quarterly
Waste	Version	Update Cycle
BGS Recorded Landfill Sites British Geological Survey - National Geoscience Information Service	June 1996	Not Applicable
Historical Landfill Sites Environment Agency - Southern Region - Hampshire and Isle of Wight Area Office Environment Agency - Southern Region - Solent and South Downs	July 2013 July 2013	Quarterly Quarterly
Integrated Pollution Control Registered Waste Sites Environment Agency - Southern Region	October 2008	Not Applicable
Licensed Waste Management Facilities (Landfill Boundaries) Environment Agency - Southern Region - Hampshire and Isle of Wight Area Office Environment Agency - Southern Region - Solent and South Downs	July 2013 July 2013	Quarterly Quarterly
Licensed Waste Management Facilities (Locations) Environment Agency - Southern Region - Hampshire and Isle of Wight Area Office Environment Agency - Southern Region - Solent and South Downs	April 2013 April 2013	Quarterly Quarterly
Local Authority Landfill Coverage Hampshire County Council - Minerals and Waste Planning Test Valley Borough Council Winchester City Council - Environmental Health Department	May 2000 May 2000 May 2000	Not Applicable Not Applicable Not Applicable
Local Authority Recorded Landfill Sites Hampshire County Council - Minerals and Waste Planning Test Valley Borough Council Winchester City Council - Environmental Health Department	May 2000 May 2000 May 2000	Not Applicable Not Applicable Not Applicable
Registered Landfill Sites Environment Agency - Southern Region - Hampshire Area	March 2003	Not Applicable
Registered Waste Transfer Sites Environment Agency - Southern Region - Hampshire Area	March 2003	Not Applicable
Registered Waste Treatment or Disposal Sites Environment Agency - Southern Region - Hampshire Area	March 2003	Not Applicable

Hazardous Substances	Version	Update Cycle
Control of Major Accident Hazards Sites (COMAH)	August 2010	
Health and Safety Executive	August 2013	Bi-Annually
Explosive Sites	March 2012	
Health and Safety Executive	March 2013	Bi-Annually
Notification of Installations Handling Hazardous Substances (NIHHS) Health and Safety Executive	November 2000	Not Applicable
Planning Hazardous Substance Enforcements		
Winchester City Council - Planning Department	November 2012	Annual Rolling Update
Test Valley Borough Council	October 2012	Annual Rolling Update
Hampshire County Council - Minerals and Waste Planning	September 2013	Annual Rolling Update
Planning Hazardous Substance Consents		
Winchester City Council - Planning Department	November 2012	Annual Rolling Update
Test Valley Borough Council	October 2012	Annual Rolling Update
Hampshire County Council - Minerals and Waste Planning	September 2013	Annual Rolling Update
Geological	Version	Update Cycle
BGS 1:625,000 Solid Geology		
British Geological Survey - National Geoscience Information Service	August 1996	Not Applicable
BGS Estimated Soil Chemistry		
British Geological Survey - National Geoscience Information Service	January 2010	Variable
BGS Recorded Mineral Sites		
British Geological Survey - National Geoscience Information Service	April 2013	Bi-Annually
Brine Compensation Area		
Cheshire Brine Subsidence Compensation Board	August 2011	Not Applicable
Coal Mining Affected Areas		
The Coal Authority - Mining Report Service	January 2012	As notified
Mining Instability		
Ove Arup & Partners	October 2000	Not Applicable
Non Coal Mining Areas of Great Britain		
British Geological Survey - National Geoscience Information Service	February 2011	Not Applicable
Potential for Collapsible Ground Stability Hazards		
British Geological Survey - National Geoscience Information Service	October 2013	As notified
Potential for Compressible Ground Stability Hazards		
British Geological Survey - National Geoscience Information Service	October 2013	As notified
Potential for Ground Dissolution Stability Hazards		
British Geological Survey - National Geoscience Information Service	October 2013	As notified
Potential for Landslide Ground Stability Hazards		
British Geological Survey - National Geoscience Information Service	October 2013	As notified
Potential for Running Sand Ground Stability Hazards British Geological Survey - National Geoscience Information Service	October 2013	As notified
		AS HUUIIIeu
Potential for Shrinking or Swelling Clay Ground Stability Hazards	0-(-1	A
British Geological Survey - National Geoscience Information Service	October 2013	As notified
Radon Potential - Radon Affected Areas		
British Geological Survey - National Geoscience Information Service	July 2011	As notified
Radon Potential - Radon Protection Measures		
British Geological Survey - National Geoscience Information Service	July 2011	As notified

Industrial Land Use	Version	Update Cycle
Contemporary Trade Directory Entries		
Thomson Directories	August 2013	Quarterly
Fuel Station Entries		
Catalist Ltd - Experian	August 2013	Quarterly
Sensitive Land Use	Version	Update Cycle
Areas of Adopted Green Belt		
Test Valley Borough Council	August 2013	As notified
Areas of Outstanding Natural Beauty		
Natural England	July 2013	Bi-Annually
Environmentally Sensitive Areas		
Natural England	July 2013	Annually
Forest Parks		
Forestry Commission	April 1997	Not Applicable
Local Nature Reserves		
Natural England	July 2013	Bi-Annually
Marine Nature Reserves		
Natural England	July 2013	Bi-Annually
National Nature Reserves		
Natural England	July 2013	Bi-Annually
National Parks		
Natural England	July 2013	Bi-Annually
Nitrate Sensitive Areas		
Department for Environment, Food and Rural Affairs (DEFRA - formerly FRCA)	February 2012	Not Applicable
Nitrate Vulnerable Zones		
Department for Environment, Food and Rural Affairs (DEFRA - formerly FRCA)	February 2013	Annually
Ramsar Sites		
Natural England	July 2013	Bi-Annually
Sites of Special Scientific Interest		
Natural England	July 2013	Bi-Annually
Special Areas of Conservation		
Natural England	July 2013	Bi-Annually
Special Protection Areas		
Natural England	July 2013	Bi-Annually

A selection of organisations who provide data within this report


Data Supplier	Data Supplier Logo
Ordnance Survey	Licensed Partner
Environment Agency	Environment Agency
Scottish Environment Protection Agency	SECTISH Environment Protection Agency
The Coal Authority	THE COAL AUTHORITY
British Geological Survey	British Geological Survey
Centre for Ecology and Hydrology	Centre for Ecology & Hydrology NATURAL ENVIRONMENT RESEARCH COUNCIL
Countryside Council for Wales	CYNGOR CEFN GWLAD CYMRU COUNTRYSIDE COUNCIL FOR WALES
Scottish Natural Heritage	SCOTTISH NATURAL HERITAGE
Natural England	NATURAL ENGLAND
Public Health England	Public Health England
Ove Arup	ARUP
Peter Brett Associates	peterbrett

Useful Contacts

Contact	Name and Address	Contact Details
1	Environment Agency - National Customer Contact Centre (NCCC)	Telephone: 08708 506 506 Email: enquiries@environment-agency.gov.uk
	PO Box 544, Templeborough, Rotherham, S60 1BY	
2	Winchester City Council - Environmental Health Department	Telephone: 01962 848519 Fax: 01962 849101 Website: www.winchester.gov.uk
	City Offices, Colebrook Street, Winchester, Hampshire, SO23 9LJ	
3	British Geological Survey - Enquiry Service	Telephone: 0115 936 3143
	British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham, Nottinghamshire, NG12 5GG	Fax: 0115 936 3276 Email: enquiries@bgs.ac.uk Website: www.bgs.ac.uk
4	Landmark Information Group Limited	Telephone: 0844 844 9952 Fax: 0844 844 9951
	Imperium, Imperial Way, Reading, Berkshire, RG2 0TD	Email: customerservices@landmark.co.uk Website: www.landmarkinfo.co.uk
5	Peter Brett Associates	Telephone: 0118 950 0761 Fax: 0118 959 7498
	Caversham Bridge House, Waterman Place, Reading, Berkshire, RG1 8DN	Email: reading@pba.co.uk Website: www.pba.co.uk
6	Natural England	Telephone: 0845 600 3078 Fax: 01733 455103
	Northminster House, Northminster Road, Peterborough, Cambridgeshire, PE1 1UA	Email: enquiries@naturalengland.org.uk Website: www.naturalengland.org.uk
7	Department for Environment, Food and Rural Affairs (DEFRA - formerly FRCA)	Telephone: 0113 2613333 Fax: 0113 230 0879
	Government Buildings, Otley Road, Lawnswood, Leeds, West Yorkshire, LS16 5QT	
8	Hampshire County Council - Minerals and Waste Planning	Telephone: 01962 841841 Fax: 01962 847055 Website: www.hants.gov.uk
	Room 130, Ashburton Court West, The Castle, Winchester, Hampshire, SO23 8UD	Website. www.hants.gov.uk
-	Public Health England - Radon Survey, Centre for Radiation, Chemical and Environmental Hazards	Telephone: 01235 822622 Fax: 01235 833891
	Chilton, Didcot, Oxfordshire, OX11 0RQ	Email: radon@phe.gov.uk Website: www.ukradon.org
-	Landmark Information Group Limited	Telephone: 0844 844 9952 Fax: 0844 844 9951
	Imperium, Imperial Way, Reading, Berkshire, RG2 0TD	Email: customerservices@landmarkinfo.co.uk Website: www.landmarkinfo.co.uk

Please note that the Environment Agency / SEPA have a charging policy in place for enquiries.

For ease of identification, your site and buffer have been split into Slices, Segments and Quadrants. These are illustrated on the Index Map opposite and explained further below.

Slice

Each slice represents a 1:10,000 plot area (2.7km x 2.7km) for your site and buffer. A large site and buffer may be made up of several slices (represented by a red outline), that are referenced by letters of the alphabet, starting from the bottom left corner of the slice "grid". This grid does not relate to National Grid lines but is designed to give best fit over the site and buffer.

Segment

A segment represents a 1:2,500 plot area. Segments that have plot files associated with them are shown in dark green, others in light blue. These are numbered from the bottom left hand corner within each slice.

Quadrant

A quadrant is a quarter of a segment. These are labelled as NW, NE, SW, SE and are referenced in the datasheet to allow features to be quickly located on plots. Therefore a feature that has a quadrant reference of A7NW will be in Slice A, Segment 7 and the NW Quadrant.

A selection of organisations who provide data within this report:

British Geological Survey Natural environment research council

Envirocheck reports are compiled from 136 different sources of data.

Client Details

Mr E Tweedie, Tweedie Evans Consulting Ltd, The Old Chapel, 35a Southover, Wells, Somerset, BA5 1UH

Order Details

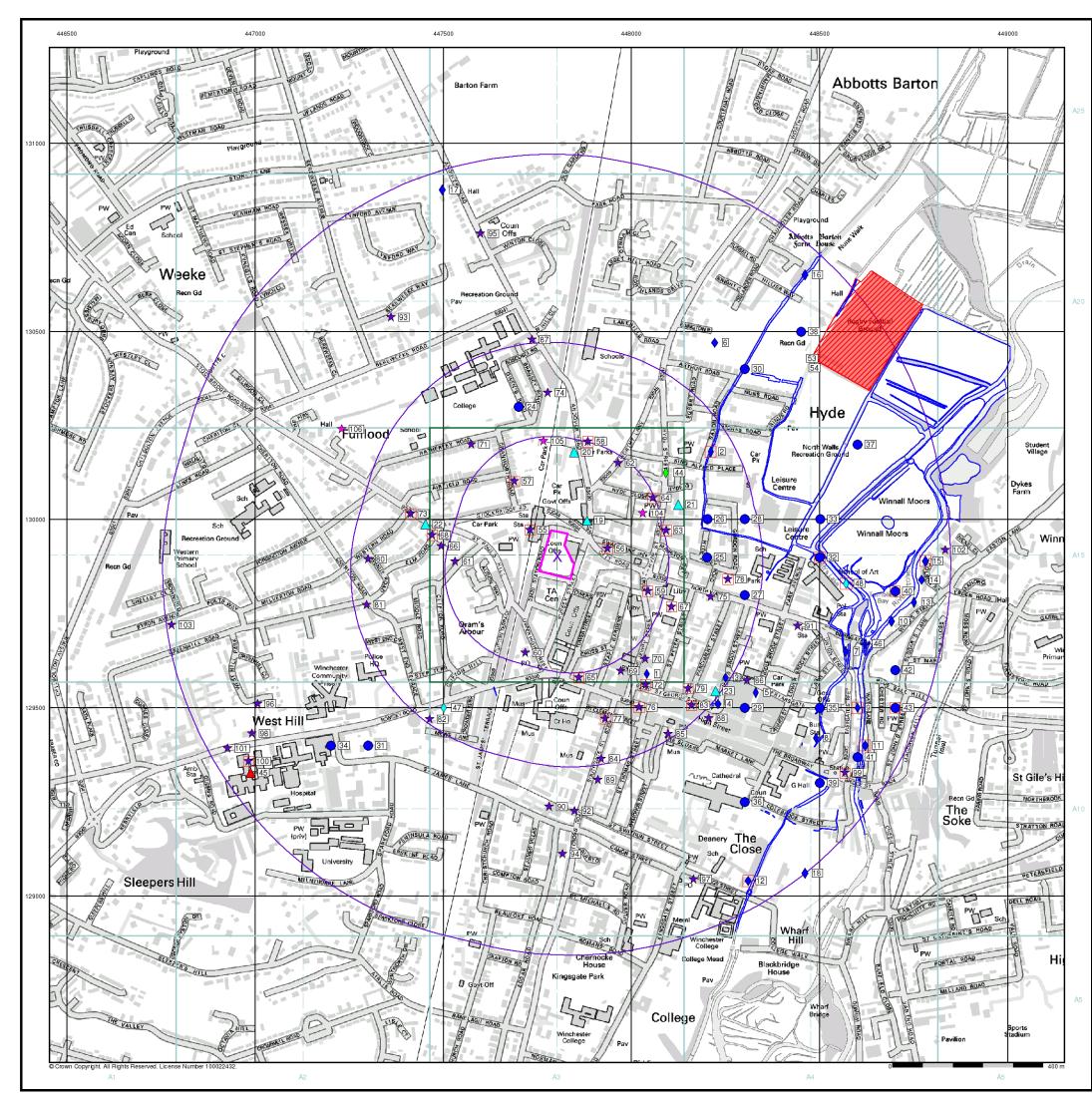
 Order Number:
 50116218_1_1

 Customer Ref:
 1308015.001

 National Grid Reference:
 447800, 129900

 Site Area (Ha):
 0.77

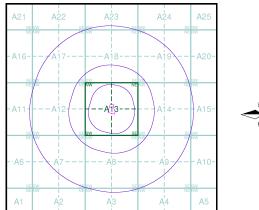
 Search Buffer (m):
 1000


Site Details

Hampshire Register Office, Station Hill, WINCHESTER, Hampshire, SO23 8TJ

Full Terms and Conditions can be found on the following link: http://www.landmarkinfo.co.uk/Terms/Show/515

Tel: Fax: Web: 0844 844 9952 0844 844 9951 www.envirocheck.co.uk



Geological

🔻 BGS Recorded Mineral Site

Industrial Land Use

- ★ Contemporary Trade Directory Entry
- 🖈 Fuel Station Entry
- Site Sensitivity Map Slice A

Order Details

Order Number:	50116218_1_1
Customer Ref:	1308015.001
National Grid Reference:	447800, 129900
Slice:	Α
Site Area (Ha):	0.77
Search Buffer (m):	1000

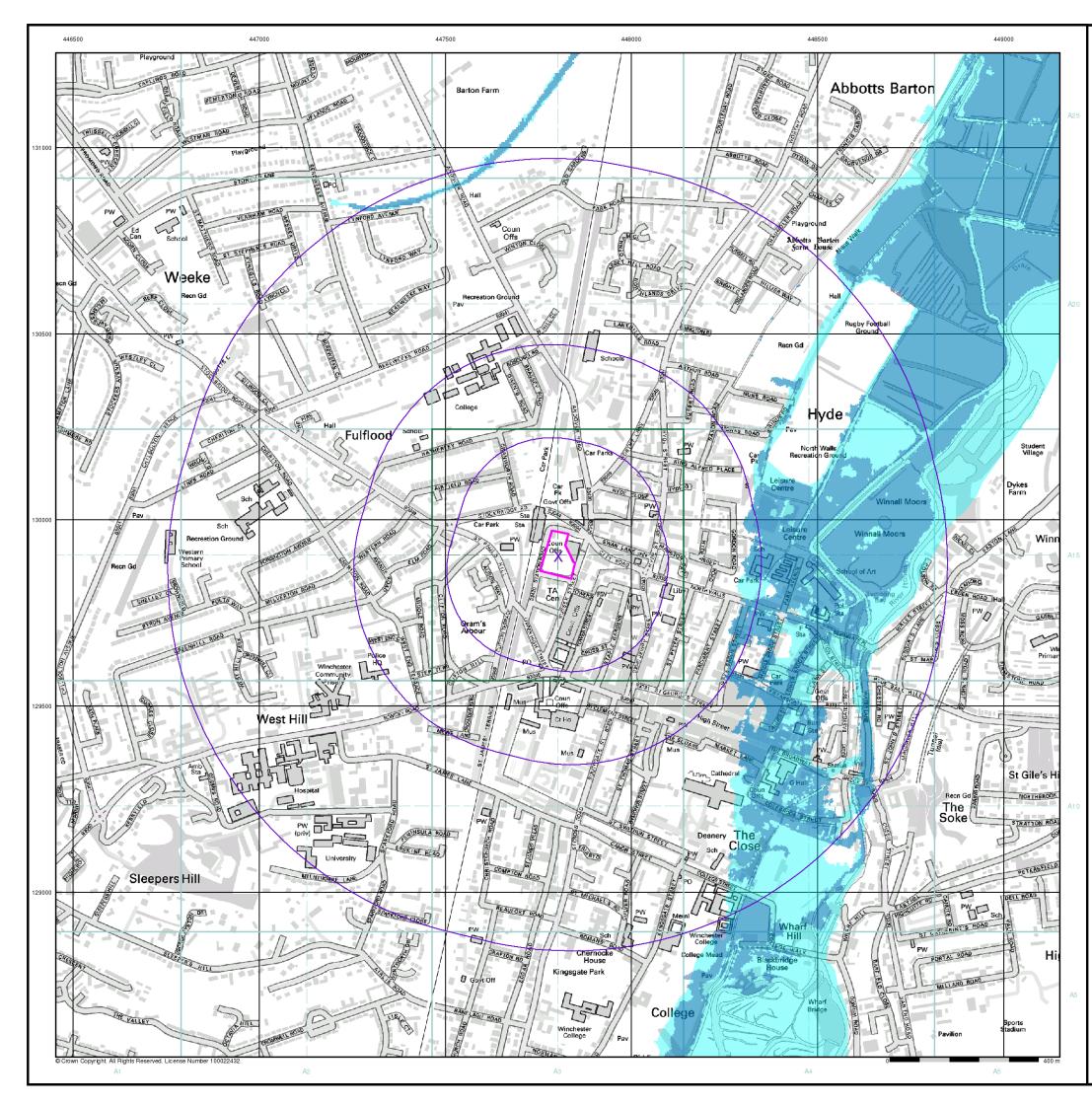
Site Details

Hampshire Register Office, Station Hill, WINCHESTER, Hampshire, SO23 8TJ

A Landmark Information Group Service v47.0 17-Oct-2013 Page 1 of 3

0844 844 9952

0844 844 9951


www.envirocheck.co.uk

Tel: Fax:

Web:

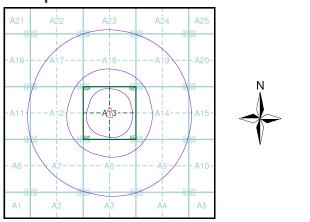
		DGS Recorded Landini Site (Location)
	Ø	BGS Recorded Landfill Site
	۲	EA Historic Landfill (Buffered Point)
		EA Historic Landfill (Polygon)
	${\color{black} igstacle}$	Integrated Pollution Control Registered Waste Site
	\boxtimes	Licensed Waste Management Facility (Landfill Boundary)
	•	Licensed Waste Management Facility (Location)
l		Local Authority Recorded Landfill Site (Location)
	Ш	Local Authority Recorded Landfill Site
	\square	Registered Landfill Site
	►	Registered Landfill Site (Location)
		Registered Landfill Site (Point Buffered to 100m)
		Registered Landfill Site (Point Buffered to 250m)
	٢	Registered Waste Transfer Site (Location)
		Registered Waste Transfer Site
	\bigcirc	Registered Waste Treatment or Disposal Site (Location)
		Registered Waste Treatment or Disposal Site
	Ha	azardous Substances
	1	COMAH Site
	1	Explosive Site
	1	NIHHS Site
	*	Planning Hazardous Substance Consent
	*	Planning Hazardous Substance Enforcement

C Specified Site C Specified Buffer(s)

X Bearing Reference Point

Agency and Hydrological (Flood)

Extreme Flooding from Rivers or Sea without Defences (Zone 2)


Flooding from Rivers or Sea without Defences (Zone 3)

Area Benefiting from Flood Defence

Flood Water Storage Areas

--- Flood Defence

Flood Map - Slice A

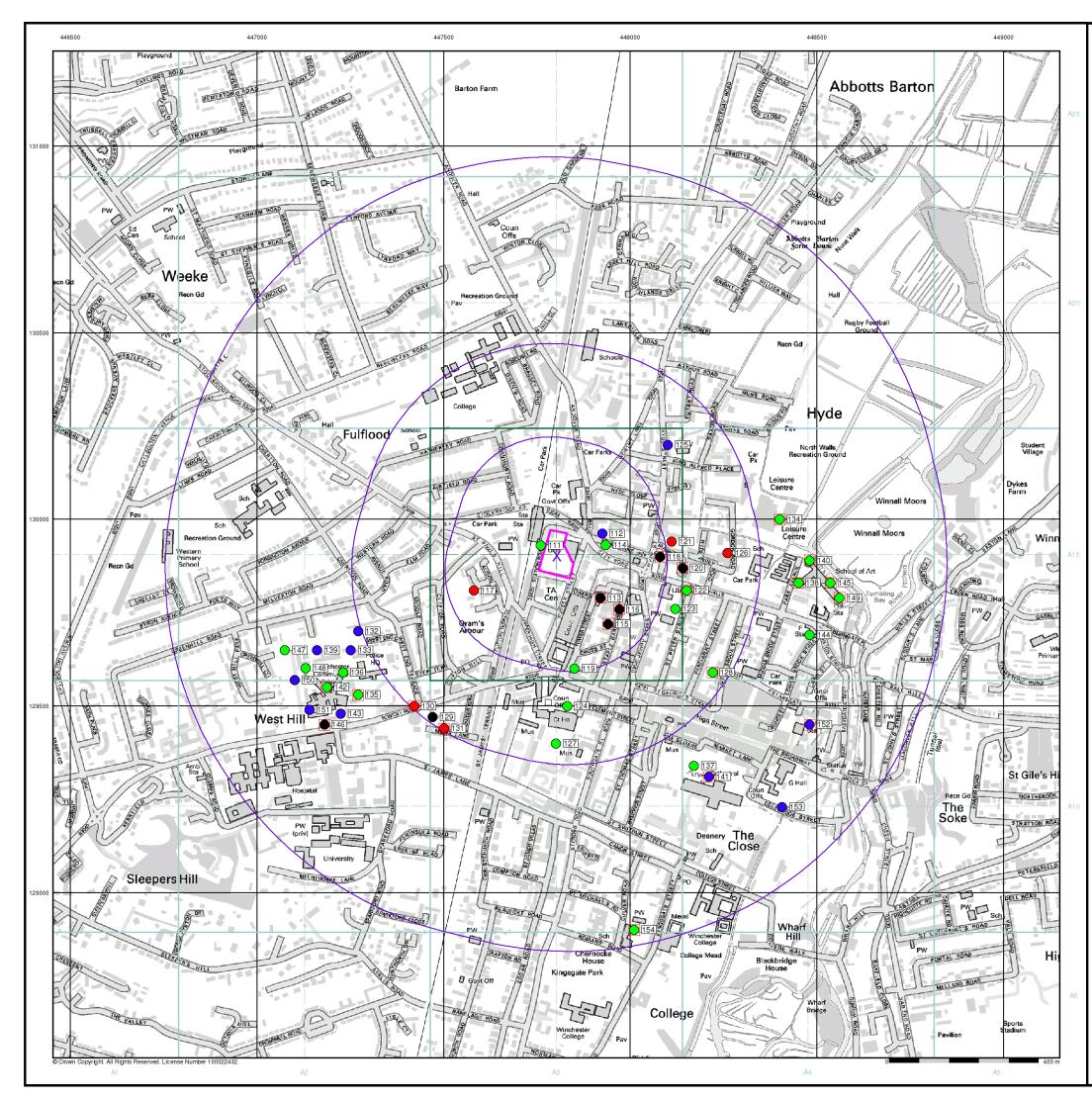
Order Details

 Order Number:
 50116218_1_1

 Customer Ref:
 1308015.001

 National Grid Reference:
 447800, 129900
 Slice: Site Area (Ha): Search Buffer (m):

А 0.77 1000


Site Details

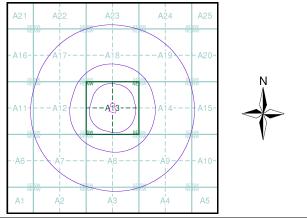
Hampshire Register Office, Station Hill, WINCHESTER, Hampshire, SO23 8TJ

Tel: Fax: Web:

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

Specified Buffer(s) X Bearing Reference Point 8 Map ID Several of Type at Location

Agency and Hydrological (Boreholes)


BGS Borehole Depth 0 - 10m

- 😑 BGS Borehole Depth 10 30m
- BGS Borehole Depth 30m + Confidential
- () Other

For Borehole information please refer to the Borehole .csv file which accompanied this slice.

A copy of the BGS Borehole Ordering Form is available to download from the Support section of www.envirocheck.co.uk.

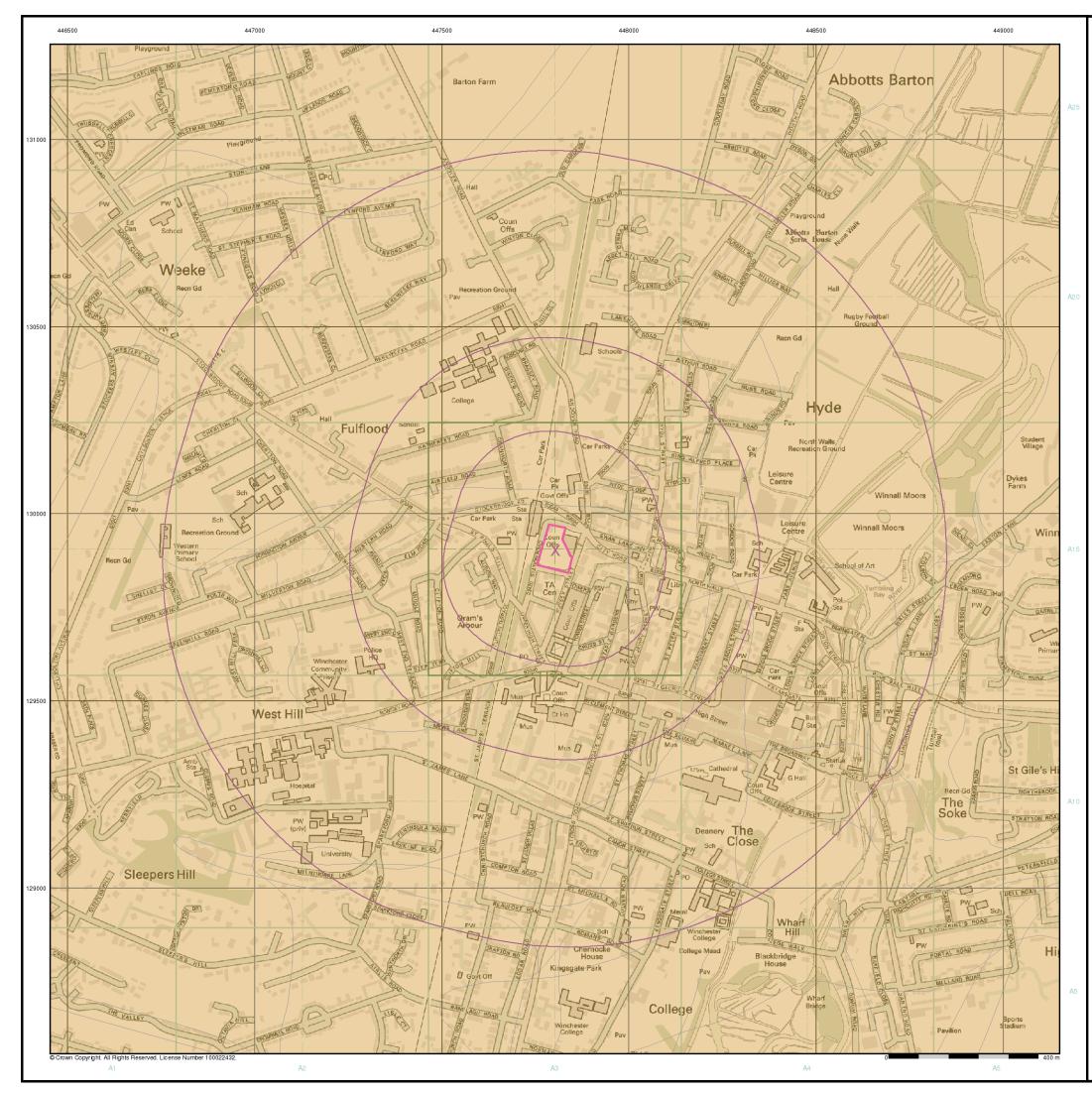
Borehole Map - Slice A

Order Details

Order Number: 50116218_1_1 Customer Ref: 1308015.001 National Grid Reference: 447800, 129900 Slice: А Site Area (Ha): 0.77 Search Buffer (m): 1000

Site Details

Hampshire Register Office, Station Hill, WINCHESTER, Hampshire, SO23 8TJ

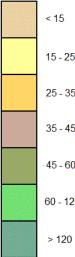


0844 844 9952 0844 844 9951

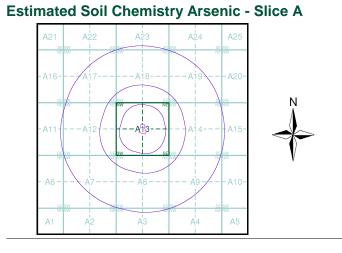
www.envirocheck.co.uk

Tel: Fax:

Web:


🔼 Specified Site

Specified Buffer(s)


X Bearing Reference Point

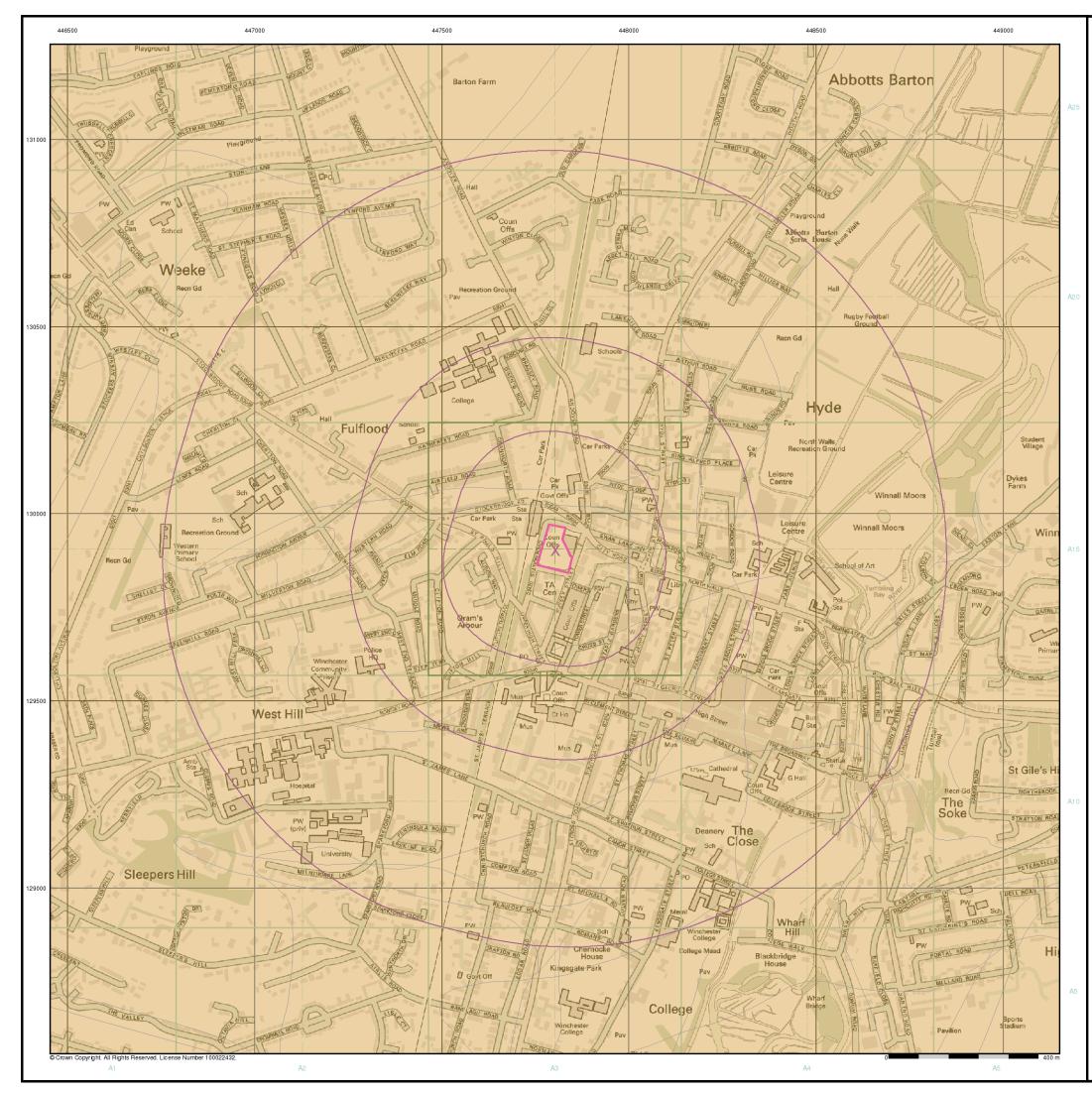
Estimated Soil Chemistry Arsenic

Arsenic Concentrations mg/kg

Order Details

Order Details: 50116218_1_1
 Customer Ref:
 1308015.001

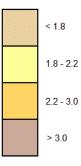
 National Grid Reference:
 447800, 129900
 Slice: А Site Area (Ha): Search Buffer (m): 0.77 1000

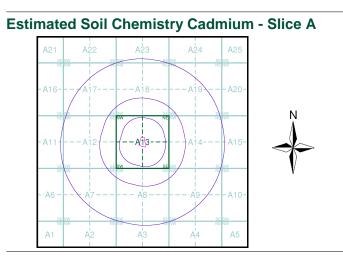

Site Details

Hampshire Register Office, Station Hill, WINCHESTER, Hampshire, SO23 8TJ

Tel: Fax: Web:

0844 844 9952 0844 844 9951 www.envirocheck.co.uk


🔼 Specified Site


Specified Buffer(s)

X Bearing Reference Point

Estimated Soil Chemistry Cadmium

Cadmium Concentrations mg/kg

Order Details

 Order Details:
 50116218_1_1

 Customer Ref:
 1308015.001

 National Grid Reference:
 447800, 129900

 Slice:
 A

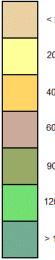
 Site Area (Ha):
 0.77

 Search Buffer (m):
 1000

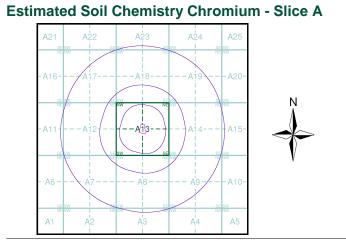
Site Details

Hampshire Register Office, Station Hill, WINCHESTER, Hampshire, SO23 8TJ

Tel: Fax: Web: 0844 844 9952 0844 844 9951 www.envirocheck.co.uk


🔼 Specified Site

Specified Buffer(s)


X Bearing Reference Point

Estimated Soil Chemistry Chromium

Chromium Concentrations mg/kg

Order Details

 Order Details:
 50116218_1_1

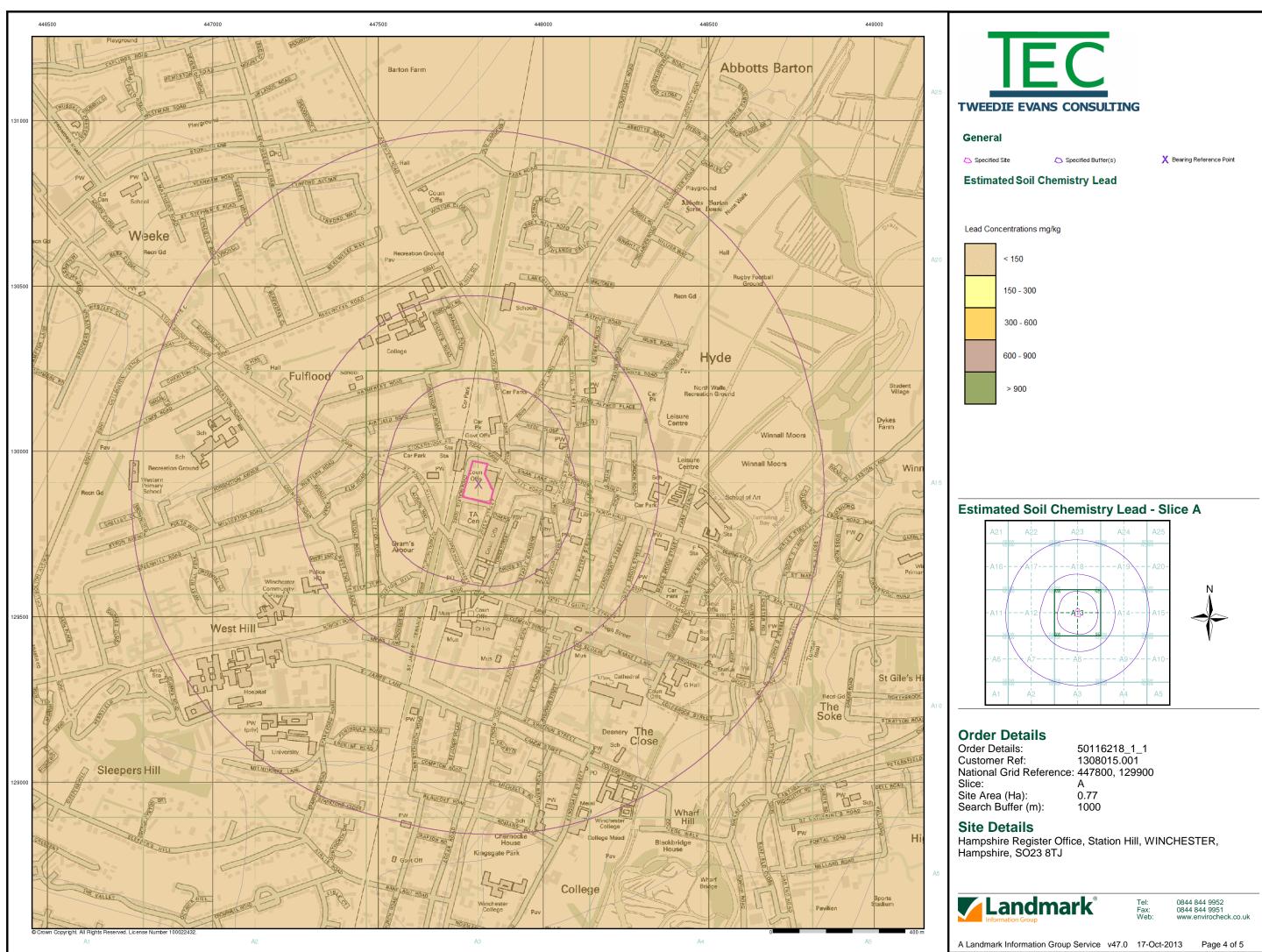
 Customer Ref:
 1308015.001

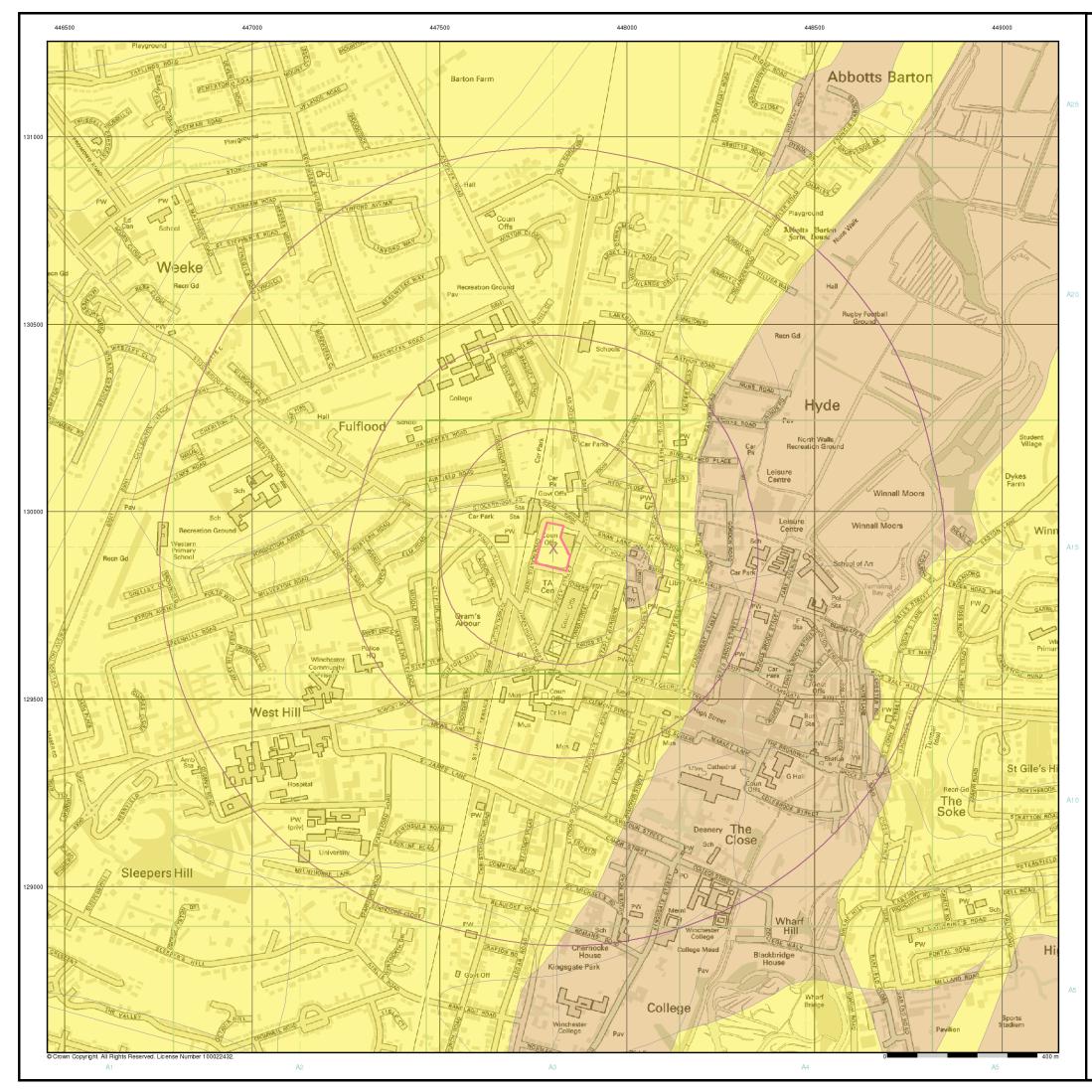
 National Grid Reference:
 447800, 129900

 Slice:
 A

 Site Area (Ha):
 0.77

 Search Buffer (m):
 1000


Site Details

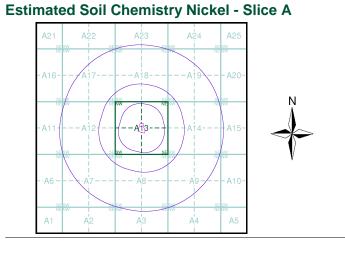

Hampshire Register Office, Station Hill, WINCHESTER, Hampshire, SO23 8TJ

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

Tel: Fax: Web:

🔼 Specified Site

Specified Buffer(s)


X Bearing Reference Point

Estimated Soil Chemistry Nickel

Nickel Concentrations mg/kg

Order Details

 Order Details:
 50116218_1_1

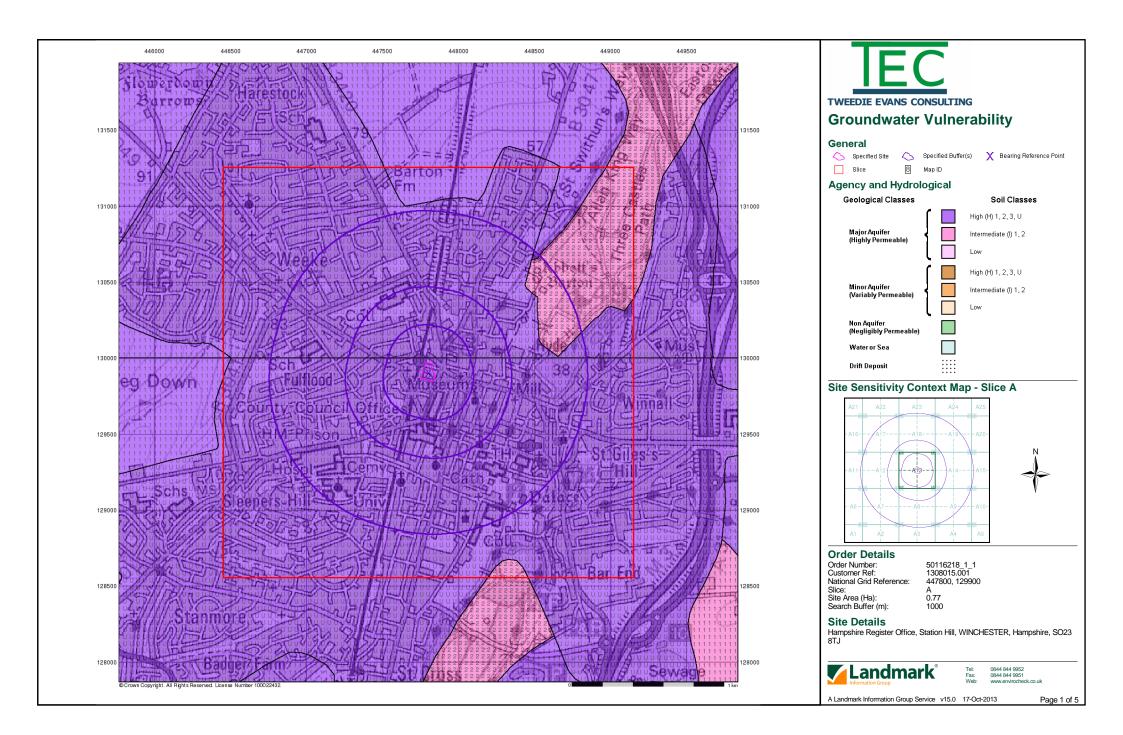
 Customer Ref:
 1308015.001

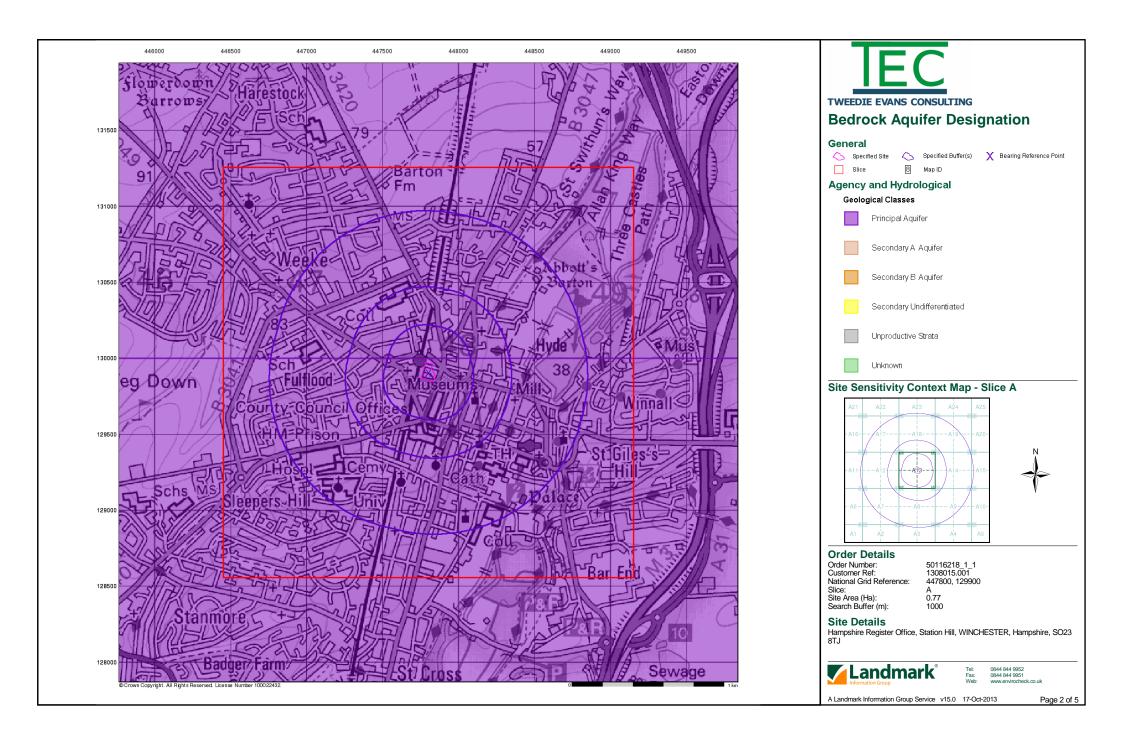
 National Grid Reference:
 447800, 129900

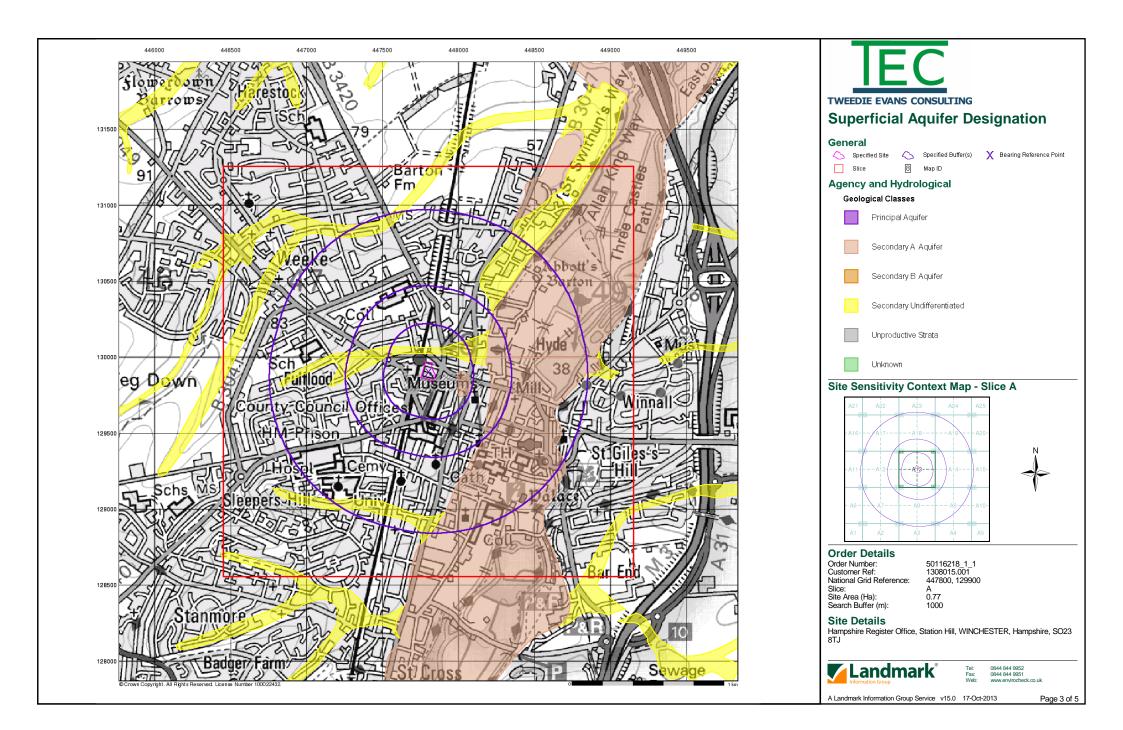
 Slice:
 A

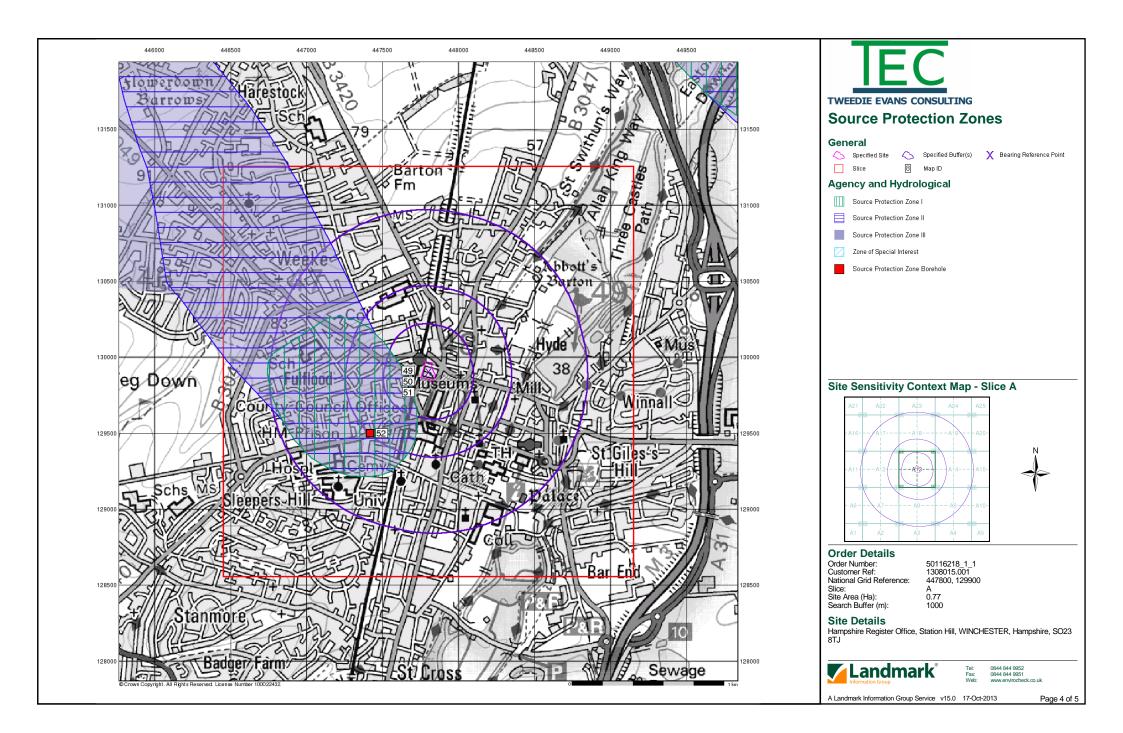
 Site Area (Ha):
 0.77

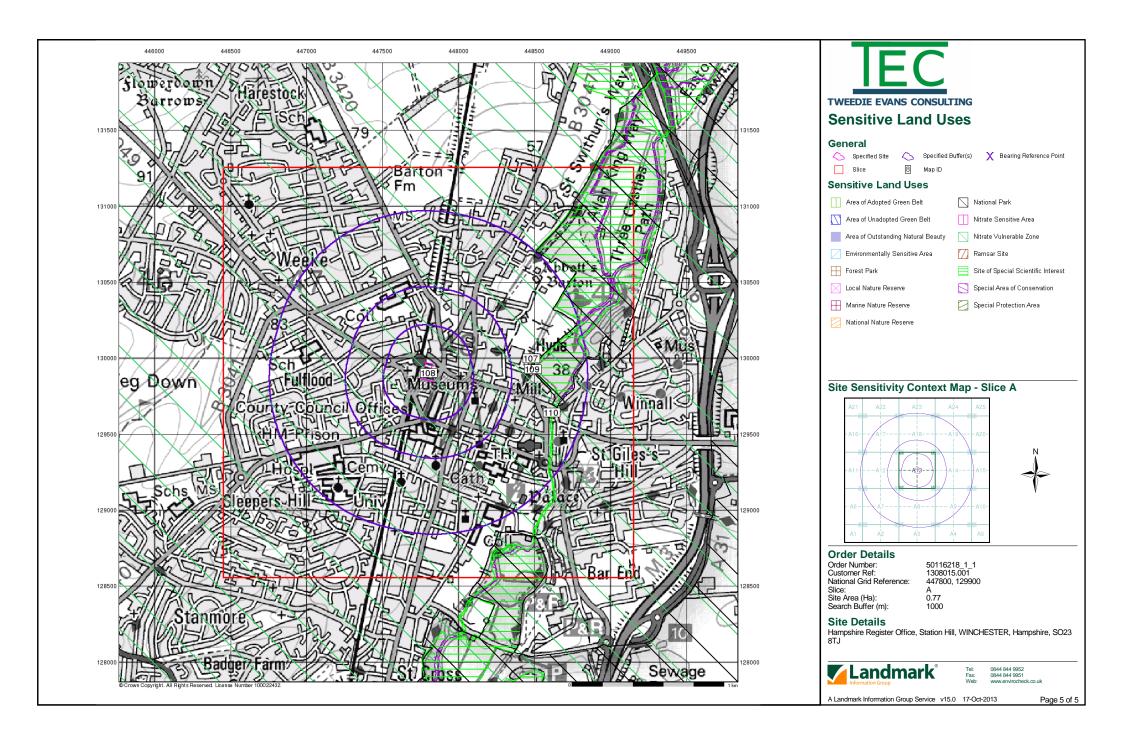
 Search Buffer (m):
 1000


Site Details


Hampshire Register Office, Station Hill, WINCHESTER, Hampshire, SO23 8TJ




0844 844 9952 0844 844 9951 www.envirocheck.co.uk


Tel: Fax: Web:

APPENDIX D

Regulatory Correspondence

From: Sent: To: Cc: Subject: aharker@winchester.gov.uk 05 April 2013 09:11 KWarren@winchester.gov.uk DIngram@winchester.gov.uk RE: Land known as the Carfax Site, Winchester PRIVATE & CONFIDENTIAL

Hi Kevin,

There are several potential contamination issues on this site you should be aware of including;

- Petrol filling station with 4 petroleum tanks with total capacity of 8000 gallons. These were filled with concrete in 1977 but there is potential for the tanks, associated infrastructure and residual contamination to be present on site.
- Engineering works between c1953 c1991
- Brewery in 1871

There are also numerous other potentially contaminating land uses within the vicinity of this site including (but not limited to) the railway, another petrol filing station and several motor vehicle garages.

This Service also holds a number of site reports relating to the site and sites within the vicinity, however given the current office moves it is not possible to access these reports at present.

It is hoped that the contamination status of the site was investigated at the time of development of the site into the registry office and records office however this Service holds no site reports or other records to demonstrate this. Prior to purchasing this site it is recommended that you make enquiries regarding the contamination status of this site and obtain copies of any geoenvironmental reports that were produced at the time of development to inform the specification for additional information required to be established.

If you require any further assistance please do not hesitate to contact me however, please be aware that I will not be able to respond until the latter part of next week until our systems and access to our files has returned to normal following the office moves.

Regards

Alison

Alison Harker Environmental Protection Officer Winchester City Council Colebrook Street Winchester SO23 9LJ Tel: 01962 848503 Fax: 01962 840586 Email: <u>aharker@winchester.gov.uk</u> www.winchester.gov.uk From: Sent: To: Cc: Subject: Attachments: PTidridge@winchester.gov.uk 28 August 2013 16:26 Ewan Tweedie; KWarren@winchester.gov.uk aharker@winchester.gov.uk; DIngram@winchester.gov.uk RE: Carfax Site, Station Hill, Winchester 20130828154717800.pdf

Kevin/Ewan

Hi guys

Alison is best placed to assist in taking this forward from our perspective, although she is on leave this week.

In her absence I can confirm we have little additional information over that which she has provided but enclosed is a marked up scan of our contaminated land data base and a copy of the historic maps for the area. Commenting on 1 to 5 that I have marked on the main map:

- We have on record that a contaminated land report from structural soils was commissioned as part of the redevelopment of this site into the new Hampshire records office – it is logged as finding no evidence of contamination. Since this was a Hampshire County Council led development they should be able to provide you a copy of this report as it was not that long ago.
- 2. Brewery and malting a Landmark entry
- 3. Factory and Works use not specified another landmark entry.
- 4. Wykehm Motors Ltd garage and petrol station. This has been obtained by data capturing Hampshire County Council Petroleum licensing records. In this instance data came from the derelict tank register so we have no map of exact locations of the 4 tanks. There are multiple overlapping entries the maximum extent I have marked in biro.
- 5. Railway Land (no surprise) another Landmark entry.

Clearly the issue relating to the petroleum usage on site is likely to need the greatest further attention as these are only recorded as having been filled and made safe so could potentially still exist in situ. If these are still present this could be potentially costly to remove and often we find contamination has occurred through the bottom of these tanks especially where they are historic and had no concrete containment.

Regards

Phil

Phil Tidridge Neighbourhoods and Environment Winchester City Council City Offices Colebrook St Winchester Hampshire SO23 9LJ Tel 01962 848519

Ewan Tweedie

From: Sent: To: Cc: Subject:	Sommers, David [david.sommers@hants.gov.uk] 05 September 2013 08:45 'KWarren@winchester.gov.uk' Ewan Tweedie; Hedges, Craig RE: Carfax Site Winchester, Wykoham Meters Ltd, Station Hill, Pot Potarch, (HE000004353702) pdf
Attachments:	Winchester - Wykeham Motors Ltd - Station Hill - Pet Petarch_(HF000004353792).pdf

Dear Kevin,

Please find attached the records for Wykeham Motors, which appears to be the site you are looking for. There is information relating to the purchase by HCC and a plan of the site (not to scale) with the location of the fuel tanks.

Please note that the tanks appear to have been made safe in 1977 in two stages, using concrete slurry.

I have searched for 2 Winnall Valley Road and found no matches.

For Winnall Valley Road in general I have three matches, none with property identifying details:

- 1. The Co-op Transport Depot
- 2. Ballard (Winchester) Ltd
- 3. Mason & Co.

If you are able to tie your property to one of these historic businesses please let me know. Alternatively I am happy to provide all 3 records if they will help you.

Regards

David.

David Sommers

Lead Petroleum Officer

Hampshire Petroleum Service Montgomery House, Monarch Way, Winchester SO22 5PW

Tel: 01962 833651 Mobile: 07718 146033 Fax: 01962 833699 Email: <u>david.sommers@hants.gov.uk</u>

Forms & Guidance at: http://www3.hants.gov.uk/tradingstandards-petroleum.htm

If you have a Freedom of Information request, please redirect to: <u>ccbs.foi@hants.gov.uk</u> Any statutory timeframe will not commence until the request is received at this address.

From: <u>KWarren@winchester.gov.uk</u> [mailto:KWarren@winchester.gov.uk]
Sent: 04 September 2013 17:39
To: Sommers, David
Cc: Hedges, Craig; <u>ewan.tweedie@tecon.co.uk</u>
Subject: Carfax Site

Good afternoon David,

As discussed WCC are seeking to purchase the above site from HCC. I attach a plan which identifies the location outlined in red. As part of the purchase an environmental study has to be undertaken to identify any potential contaminants. The initial study has shown that four filled petrol tanks are believed to be situated in the site, however we have been unable to ascertain precisely where. It would reduce the cost of the site investigation if the location of the tanks could be pinpointed. It would therefore be of assistance if you were able to advise where the tanks might be located.

I look forward to hearing from you shortly.

Kind regards,

Kevin

Kevin Warren

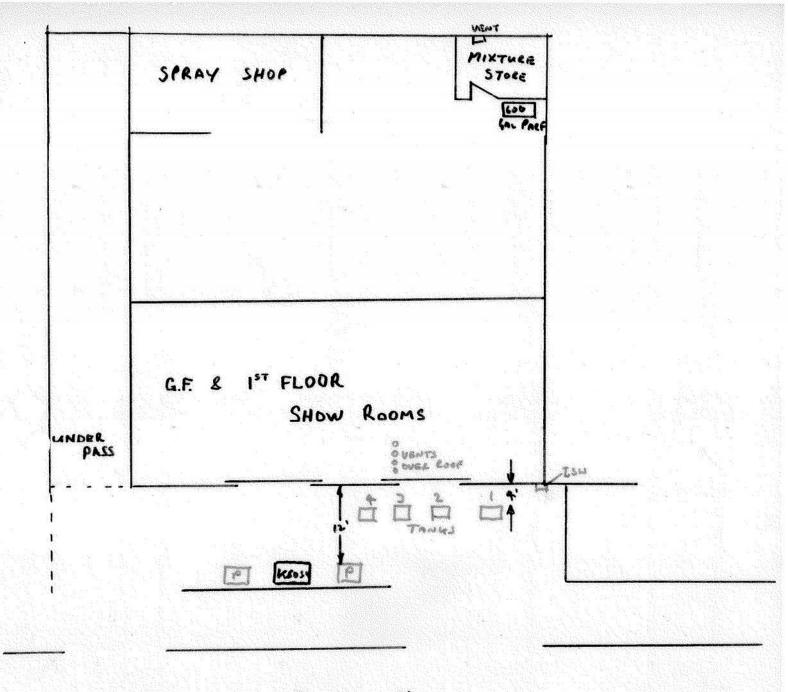
Head of Estates Winchester City Council Colebrook Street WINCHESTER SO23 9LJ 01962 848528

			REGISTER	NO	W	1.40
<u>D</u>	ERELICT TANK REGIS	STER				
Licence No	Period	From		To	20	1/12/44
Full Name and Address of						
Wykeham Motors 1	T), Station full,	wi		Tel No	, ,	
Full Name and Address of	Occupier					

\$

Tel No 🦳

Tel No


Full Name and Address of Owner

H.C.C. The castle winchester, Hauts

Tanks

Number	Installed	QUANTITY Tested	Next Test Due	Remarks
1	not known	2000 galls	see plan	filled with Concreti
2	not known	2000 galls	see plan	filled with concrete
3	mot known	2000 gallo	se plan	filled with concrete
4	nee known	2000galls	se plan	filled with concrete
5		0		
Ì				
57		13		
ġ				

PL9 - Date Sent $\sqrt{/A}$ N/A. (HQ only) PL10(PH Act Notice) - Date Sent Date Rendered Safe 384 13/5/44 Method Conc. ful. PL12 - $\frac{N/A}{(Date)}$ PL13 - $\frac{N/A}{(Date)}$ Local Authority Notified SIGNED C: J Partridger RANK Sublo. DATE 8/11/81

STATION HILL

MAXIMUM NO. TO BE EMPLOYE	D IN COMPARTMENT (12)
FIRE RESISTING SELF CLOSING DO	OR (1 Hour) FRSCD or FRSCD 1 etc.
FIRE RESISTING (Hour) . FR	FIRE RESISTING(1 Hour) FR1(etc)
HIGHLY FLAMMABLE ,	HIGHLY FLAMMABLE MATERIALS STORED .
FIRE EXIT SIGN E or etc.	PANIC BOLTS PB
VERTICAL LADDER VL	RAKING LADDER . RL
HYDRANT	FIRE BLANKET
(Bell, Gong, etc.)	FIRE ALARM CALL POINT
WATER BUCKET , WB	SAND BUCKET
WATER EXTINGUISHER .	FOAM EXTINGUISHER .
DRY POWDER EXTINGUISHER	CARBON DIOXIDE
AUDIBLE WARNING R	HOSE REEL

DDRESS CT	ATION HILL
<u> </u>	ATTON FICE

GAF 3215/72

NOTE FOR FILE Wykeham Motors Station Hell Winchester ADDRESS INSPECTING OFFICER K. HHMMM 20/12/17 DATE

orited site today and met Chemist who certified tanks gas free. Tanks have now been rendered safe by filling with cement slarry.

12 Hanny

TELEGRAMS-TELEPHONE-"BATES, CHEMISTS, SOUTHAMPTON" 22766 SOUTHAMPTON W. BATES & CO., LTD., ANALYTICAL CHEMISTS. 1245 SHIPPING AND EXPORT DRUGGISTS, MAKERST AND FITTERS OF SHIPS MEDICINE CHESTS OXFORD HOUSE, COLLEGE STREET, SOUTHAMPTON, SO9 1LN Clanny an ge 2019 27 Messrs 2.000 Jull 1/2 Janh) The have this day examined on board the above vessel :te abour levo We have tested samples of air taken therefrom and hereby certify same to be free from inflammable vapour. Wellenis with concrete REMARKS for and on bohalf of W. BATES & CO., LTD.,

NOTE FOR FILE

ADDRESS	WYKEHAM	Motors	STATION	HILL	WI	VCHESTER
DATE	19/12/27		INSPEC	FING OFFI	CER K	HAMMONS

Southern cleansing Services, Bottey altended site on 19/12/5 and bottened and cleaned two underground storage tanks, ready for filling coment slarry.

12 Hann

	HAMP	SHIRE COUNTY SECRETARY'S DEPARTMENT
Memorandum from :		To: 56DEC1977
County Istates Officer		County Architect + for the attention of Mr Jarman cc Please see List below 73/2
Winchester 4411 ext 497	please quote 5M/87/AJS/PJM	YOUR REFERENCE Date 5th December, 1977

WYKEHAM MOTORS - GARAGE PREMISES, STATION HILL, WINCHESTER

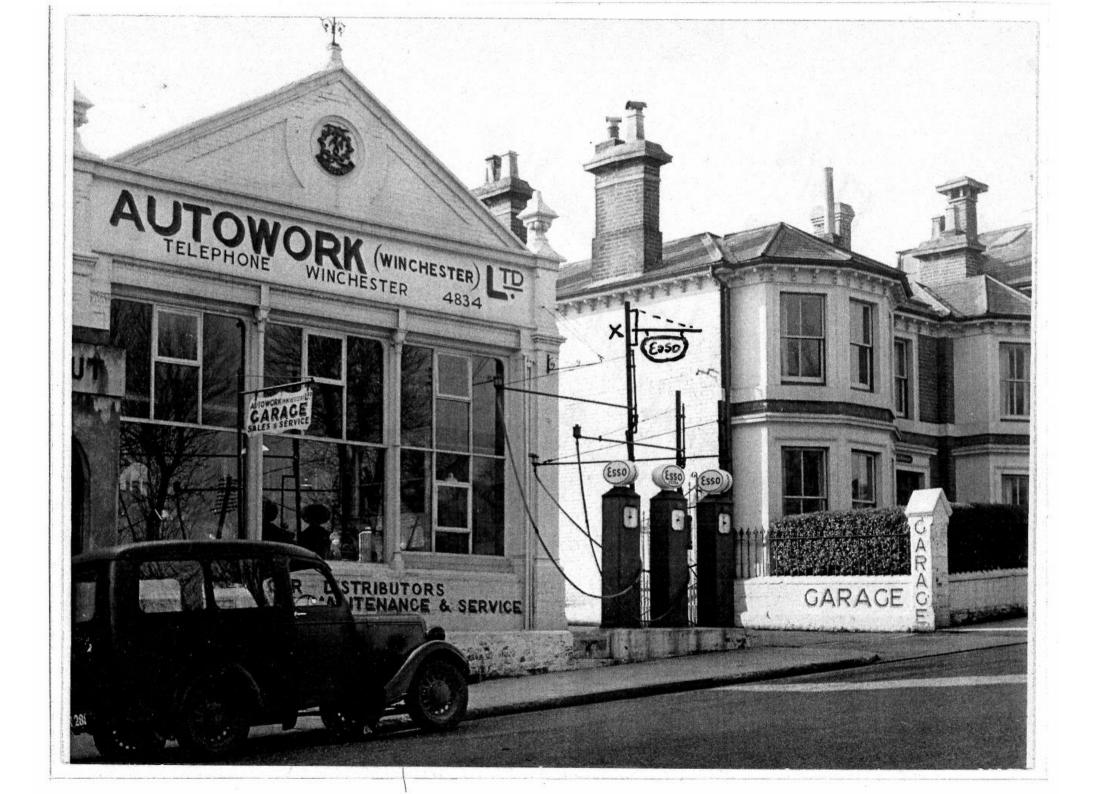
The County Council completed the purchase of the above premises on the 1st instant. Two disused petrol tanks, accessible from the forecourt, require immediate attention and in this respect I attach a copy of a memorandum I have received from the County Secretary.

At the option of the vendoúrs the tanks were not filled in prior to the County Councils purchase and £300 has accordingly been set aside for this purpose.

I understand that each of the two tanks contains approximately 30 gallons of residue fuel which cannot be extracted by the existing petrol pump. I understand from Mr Walker your group leader, electrical maintenance, that the tanks will have to be properly emptied, possibly by a specialist firm such as Southern Cleansing Services, Botley, flushed out in some way to dispell harmful or inflammable gases and completely filled with lean mix concrete so as to leave no voids.

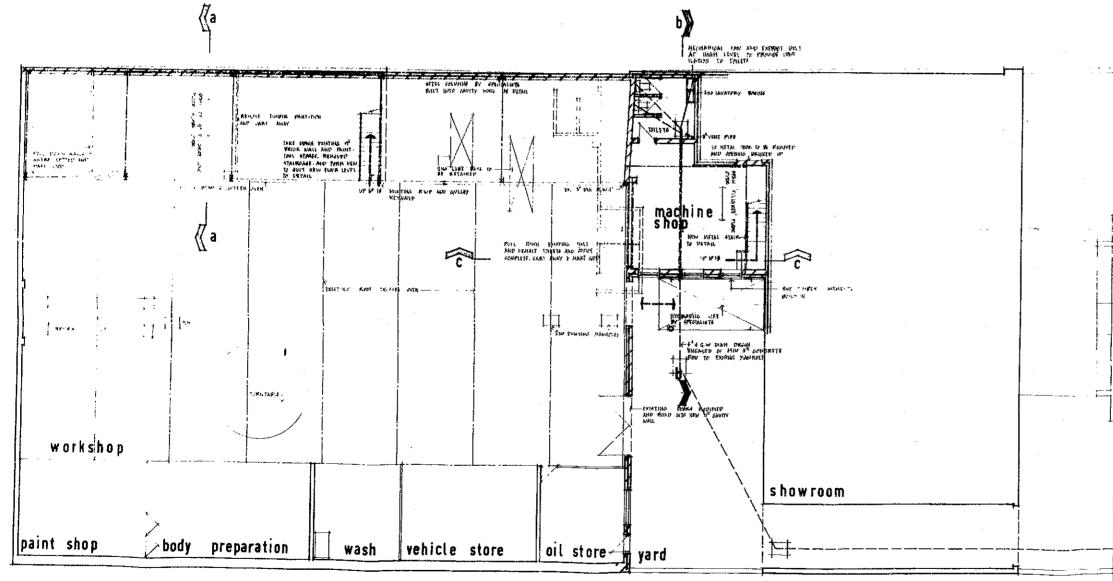
I will be most grateful if you will undertake this work at the earliest possible time and liase with the Chief Fire Officer who will no doubt wish to be on hand when the necessary operations are carried out.

As mentioned above up to £300 of the cost of doing this work can be charged against the cost of acquisition of the property. Any additional amount must be charged against maintenance or some similar budgetry provision.

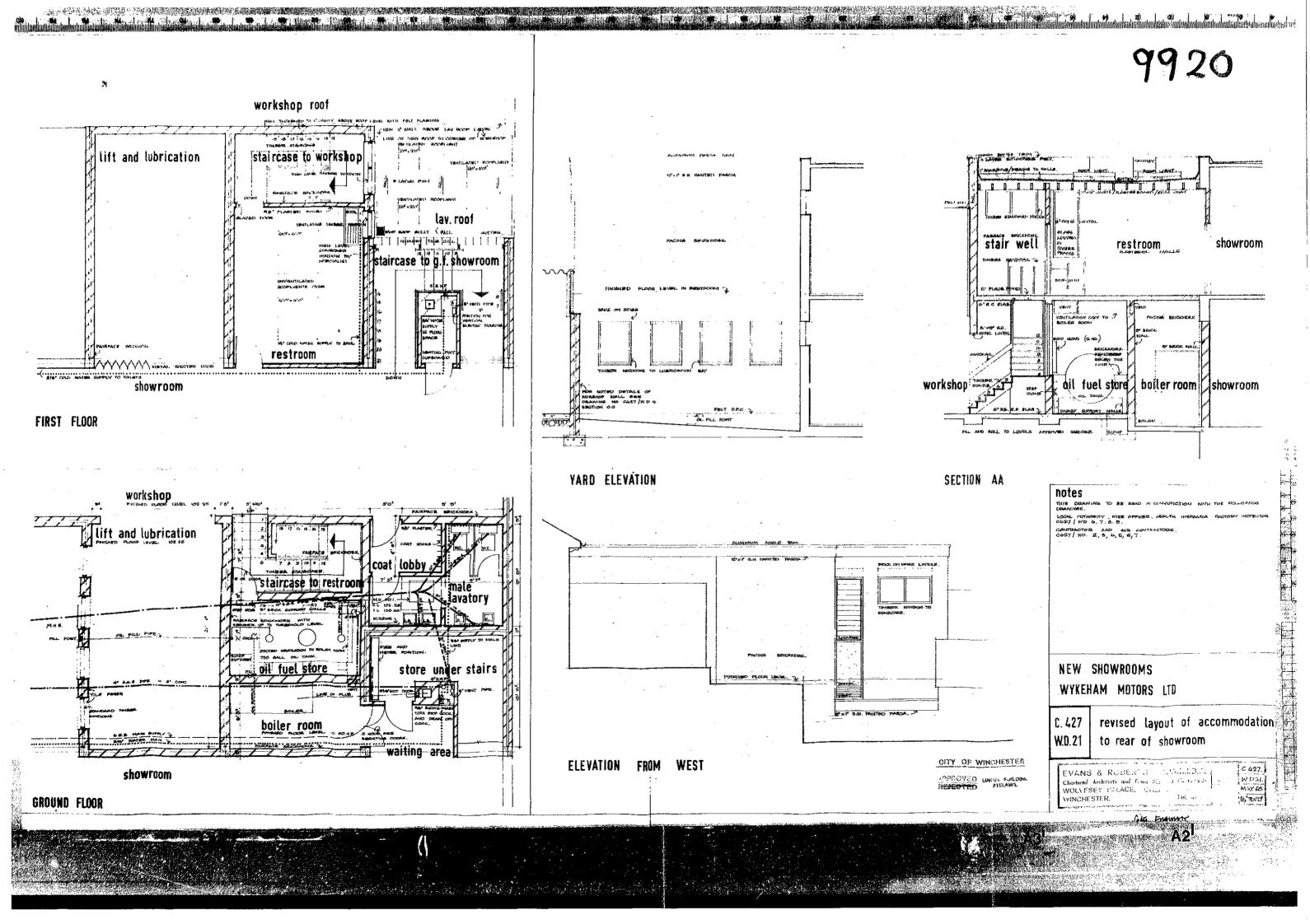

With regard to disconnecting and making dead the electrical supply Mr Crouch will contact Mr Walker after Monday next week. A supply must be maintained to the single room on the first floor occupied by Smiths Motoring School and a meeting with the proprietors of the school has been arranged for December 5th. Provision of a separate supply to the first floor room in question appears to be necessary.

I hope that by the time you receive this memorandum Mr Schrier will have discussed details with Mr Jarman.

cc County Secretary Ref: PR567/BQ/DF Chief Fire Officer (Divisional Officer Mr Sullivan) <u>Chief Fire Officer (Station Officer, Mr Long 'C' Division)</u> County Architect Mr Walker County Estates Department Mr P Crouch (488)


H. C. C. AR	CHITECTS
REC'D. 6D	EC 1977
CFØ. I	11
ANS'D BY	DATE
 FILE	DATE

HAMPSHIRE FIRE BRIGADE NOTE FOR FILE ADDRESS: WYKEHAM MOTORS - WINCHESTER INSPECTING OFFICER SUB.O. HAMMOND 13-5-77 DATE: Visital the above promises, tonke No 3 + cleaned, degand and filled with Cement Sturry. NOTE 12-8-77 Telephne Call by MR Pitt, they have deain that the two exciting tanks will be rendered sofe. I will no tenger require a licence. However, this will take place only when agreed between shell , Wykehims .. Informal MR. Vitt that we will twence the sile for one years on completion of rendering sofe, will refund only money Due".



7.

fie

CHY OF MINCHESTER (BURDARY GULATER 1295) PLAN NO 3277 RECTO 21 AFR1960 APPROVED 3-6-66 REFUSEL Wypthem putin its new workshop and stores wykeham motors ltd 427 ground floor plan

APPENDIX E

Risk Evaluation

Risk Evaluation

The qualitative assessment methodology presented in Ciria publication C552 (2001) titled '*Contaminated Land Risk Assessment: A Guide to Good Practice'* has been used by TEC for the basis of evaluating potential risk.

The method requires an assessment of the:

- magnitude of the probability or likelihood of the risk occurring (Table 1); and
- magnitude of the potential consequence or severity of the risk occurring (Table 2)

Table 1. Classification of Probability

Classification	Definition
High likelihood	There is a pollution linkage and an event that either appears very likely in the short-term and almost inevitable over the long-term, or there is evidence at the receptor of harm or pollution.
Likely	There is a pollution linkage and all the elements are present and in the right place, which means that it is probable that an event will occur. Circumstances are such that an event is not inevitable, but possible in the short-term and likely over the long-term.
Low likelihood	There is a pollution linkage and circumstances are possible under which an event could occur. However, it is by no means certain that even over a longer period such an event would take place, and is less likely in the short-term.
Unlikely	There is a pollution linkage but circumstances are such that it is improbable that an event would occur even in the very long-term.

Table 2. Classification of Consequence

Classification	Definition	Examples
Severe	Short-term (acute) risk to human health likely to result in "significant harm" as defined by the Environment Protection Act 1990, Part IIA. Short- term risk of pollution of sensitive water resource. (Note: Water Resources Act contains no scope for considering significance of pollution). Catastrophic damage to buildings/property. A short-term risk to a particular ecosystem, or organisation forming part of such ecosystem (note: the definitions of ecological systems within the draft circular on Contaminated Land, DETR, 2000).	High concentrations of cyanide on the surface of an informal recreation area. Major spillage of contaminants from site into controlled water. Explosion, causing building collapse (can also equate to a short-term human health risk if buildings are occupied).
Medium	Chronic damage to human health ("significant harm" as defined in DETR, 2000). Pollution of sensitive water resources. (Note: Water Resources Act contains no scope for considering significance of pollution). A significant change in a particular ecosystem, or organism forming part of such ecosystem, (note: the definitions of ecological systems within draft circular on Contaminated Land, DETR, 2000).	Concentration of a contaminant from site exceeding the generic or site-specific assessment criteria. Leaching of contaminants from a site to a major or minor aquifer. Death of a species within a designated nature reserve.
Mild	Pollution of non-sensitive water resources. Significant damage to crops, buildings, structures and services ("significant harm" as defined in the draft circular on Contaminated Land, DETR, 2000). Damage to sensitive buildings/structures/services or the environment.	Pollution of non-classified groundwater. Damage to building rendering it unsafe to occupy (for example foundation damage resulting in instability).
Minor	Harm, although not necessarily significant harm, which may result in a financial loss, or expenditure to resolve. Non-permanent health effects to human health (easily prevented by means such as personal protective clothing etc), easily repairable effects of damage to buildings, structures and services.	The presence of contaminants at such concentrations that protective equipment is required during site works. The loss of plants in a landscaping scheme. Discolouration of concrete.

The combination of the two factors is determined using Table 3 and the resulting level of risk is described in Table 4. The evaluation can be applied to each of the scenarios identified in the risk model and the overall risk assessed.

			Consec	quence	
		Severe	Medium	Mild	Minor
	High Likelihood	Very High Risk	High Risk	Moderate Risk	Moderate/Low Risk
Probability	Likely	High Risk	Moderate Risk	Moderate/Low Risk	Low Risk
Proba	Low Likelihood	Moderate Risk	Moderate/Low Risk	Low Risk	Very Low Risk
	Unlikely	Moderate/Low Risk	Low Risk	Very Low Risk	Very Low Risk

Table 3. Combination of Consequence with Probability

Table 4. Description of risks and likely action required

Very High Risk	There is a high probability that severe harm could arise to a designated receptor from an identified hazard, or there is evidence that severe harm to a designated receptor is currently happening. This risk, if realised, is likely to result in a substantial liability. Urgent investigation (if not undertaken already) and remediation are likely to be required.
High Risk	Harm is likely to arise to a designated receptor from an identified hazard. Realisation of the risk is likely to present a substantial liability. Urgent investigation (if not undertaken already) is required and remedial works may be necessary in the short-term and are likely over the longer- term.
Moderate Risk	It is possible that harm could arise to a designated receptor from an identified hazard. However, it is either relatively unlikely that any such harm would be severe, or if any harm were to occur it is more likely that the harm would be relatively mild. Investigation (if not already undertaken) is normally required to clarify the risk and to determine the potential liability.
	Some remedial works may be required in the long-term.
Low Risk	It is possible that harm could arise to a designated receptor from an identified hazard, but it is likely that this harm, if realised, would at worst normally be mild.
Very Low Risk	There is a low possibility that harm could arise to a receptor. In the event of such harm being realised it is not likely to be severe.

Using the risk model the pollutant linkages are identified and a preliminary estimate of risk undertaken. If there is no pollutant linkage identified, then there is no risk. If the estimate of risk for all the linkages and exposure scenarios is very low at this stage then it is likely that no further assessment will be required.

APPENDIX F

Exploratory Hole Logs

BOREHOLE: BH01

TWEEDIE EVANS CONSULTING LTD The Old Chapel 35a Southover Wells Somerset BA5 1UH Project Title: Carfax, Winchester

Project No: 1308015.001

Dates: 21/10/2013 - 22/10/2013

Client: Winchester City Council

Depth (m)	Description	Legend	Depth (m)		nple tails	Remarks	Installation
D D	Description	Legena	D De		Depth	Remarks	Installation
	Ground Surface		0.0				
	MADE GROUND Brown sandy gravel of limestone,		-		0.3m	PID (ppm) and SPT PID at 0.2mbgl = 0.00	
0.50	flint and red brick.		-	A	0.5m	PID at 0.5 mbgl = 0.00	cret
	MADE GROUND		_			FID at 0.5mbgr = 0.00	Concrete
	Light brown to white gravelly sandy silt. Gravel of chalk, flint		1.0-	-		PID at 1.0mbgl = 0.00	toni
	and red brick.		-	-		SPT at 1.2mbgl = (4, 4) 4,	Col
1.60			-	1		10, 11, 11 N = 36	
	MADE GROUND					PID at 1.75mbgl = 0.00	
2.00	Light brown to white sandy clayey gravel of red brick, chalk and flint.		2.0-	-		SPT at 2.0mbgl = (4, 10) 16,	
2.30	Occasional wood fragments.		-		2.3m	9, 10, 12 N = 49	
2.50	Structure between 1.8m and 2.0m		-	<u>т</u>	2.5m		
	recovered as cobbles and boulders						
3.00	of red brick and concrete.		3.0-	-		SPT at 3.0mbgl = (4, 5) 4, 4,	
	MADE GROUND		- 1	-		3, 3 N = 14	
	Reddish brown locally white slightly silty gravelly clay. Gravel		-		3.5m		
	of chalk and red brick.	╱ ┍╵┍╵╵┍╵	_		3.7m		
4.00	Reddish brown locally white		4.0-	Α	4.0m		
	gravelly CLAY. Gravel of chalk.	┟┲┍┲╼┲┲			4.1m		
	Structureless CHALK composed of white, slightly gravelly clayey				4.35m 4.55m		
	SILT. Gravel is very weak low	│ ╵┍╵ ╹╹	_		1.55111		
	density with occasional reddish brown staining. (Grade Dm?)		5.0-	-		SPT at 5.0mbgl = (4, 4) 4, 4,	
	Structureless CHALK composed of		-	-		4, 4, N = 16	
	silty sub-angular to sub-rounded		-				
5.80	GRAVEL. Clasts are very weak low density and white. Occasional		-				
	angular to sub-rounded flint.		6.0-	-			
	(Grade Dc?)		-	-			
	Very weak to weak, low to medium density CHALK, white with		-			SPT at 6.5mbgl = (4, 5) 6, 6,	
	occasional yellow staining.		-	_		10, 10 N = 32	
	Weak, medium density CHALK,		7.0-	-			
	white with occasional yellow		-	-			
	staining.		-				
	Occasional bands of flint.		-	_			
			8.0-	-		SPT at 8.0mbgl = (4, 8) 12,	
			- 1	-		10, 12, 14 N = 48	
			-				
			_	1			
			9.0-	-			
Notes:			P	lant: Da	ando 20	00	1000 1000
A -	Amber Glass Jar		W	ater Ob	servati	ons:	
	Plastic Tub Glass Vial			Fround	vator or	ncountered at 19.3mbgl.	
D -	Disturbed Sample			Jounuv	vater er	icountereu at 19.5mbyl.	
	Undisturbed Sample Bulk Sample						
SPT	 Standard Penetration Test 						
HSV	- Hand Shear Vane			ogged l	ov: CH	Checked by: ET Appro	ved by: RE
L				- 59001	.,		

BOREHOLE: BH01

TWEEDIE EVANS CONSULTING LTD The Old Chapel 35a Southover Wells Somerset BA5 1UH Project Title: Carfax, Winchester

Project No: 1308015.001

Dates: 21/10/2013 - 22/10/2013

Client: Winchester City Council

Depth (m)	Description	Legend	Depth (m)	San Det	nple tails	Remarks	Installation
۵Ŀ			۵Ľ	Туре	Depth		
			- - - 10.0-	- - -	10.0m 10.2m	SPT at 9.5mbgl = (5, 10) 6, 8, 8, 9 N = 31	
			- - 11.0- - - -	-		SPT at 11.0mbgl = (5, 9) 6, 5, 7, 7 N = 25	3-6mm Pea Gravel
			12.0- - - 13.0- -	-		SPT at 12.5mbgl = (4, 4) 1, 1, 4, 7 N = 13	50mm HPDE pipe 3-6
			- - 14.0- - -	-		SPT at 14.0mbgl = (20, 5/15mm) 21, 23, 6/60mm N >50	
15.00	Weak to moderately weak, medium to high density CHALK, white with moderate yellow staining. Occasional bands of flint.		15.0- - - 16.0-			SPT at 15.5mbgl = (6, 14) 16, 15, 18, 1/5mm N>50	
			- - 17.0- - - - -	-		SPT at 17.0mbgl = (7, 15) 16, 9, 10, 14 N = 49	
Notes:			18.0-	lant: Dr	ando 20	00	
A - T - V - D - U -	Amber Glass Jar Plastic Tub Glass Vial Disturbed Sample Undisturbed Sample		W	ater Ob	servati		
SPT	Bulk Sample - Standard Penetration Test - Hand Shear Vane		L	ogged b	oy: CH	Checked by: ET Appro	ved by: RE

BOREHOLE: BH01

TWEEDIE EVANS CONSULTING LTD The Old Chapel 35a Southover Wells Somerset BA5 1UH

Project Title: Carfax, Winchester

Project No: 1308015.001	Dates: 21/10/2013 - 22/10/2013

Client: Winchester City Council

Depth (m)	Description	Legend	Depth (m)	Det	nple ails Depth	Remarks		Installation
			- - - 19.0-			SPT at 18.5mbgl = (9, 9 10, 6, 4 N = 37	9) 17,	
20.50	Moderately weak, high density white unstained CHALK.		- - 20.0- - - -			SPT at 20.0mbgl = (12, 5, 7, 15 N = 33	, 7) 6,	
	Occasional bands of flint.		21.0- - - 22.0- -			SPT at 21.5mbgl = (25/50mm) 50/40mm I 50	N >	
			- 23.0- - - -			SPT at 23.0mbgl = (7, 9, 9, 15 N = 42	9) 9,	
25.00	Borehole Terminated		24.0- - - 25.0-			SPT at 24.5mbgl = (12, 19, 31 N>50	, 13)	
			- - 26.0- - - -					
Notes:			- 27.0- Pl	ant: Da	ando 20	00		
T - V - D - U - B - SPT	Amber Glass Jar Plastic Tub Glass Vial Disturbed Sample Undisturbed Sample Bulk Sample - Standard Penetration Test - Hand Shear Vane		G	ater Ob	oservatio vater en			/ed by: RE

BOREHOLE: BH02

Project Title: Carfax, Winchester

TWEEDIE EVANS CONSULTING LTD The Old Chapel 35a Southover Wells Somerset BA5 1UH

Project No: 1308015.001

Dates: 23/10/2013

Client: Winchester City Council

Depth (m)	Description	Logond	Depth (m)		nple ails	Demontre	Installation
	Description	Legend	D del		Depth	Remarks	Installation
	Ground Surface		0.0				
0.20	MADE GROUND		0.0	_		PID (ppm) and SPT	
	Tarmacadam Hardstanding.	```````````````````````````````````````	-	_		PID at 0.25mbgl = 0.00	ete
	MADE GROUND		- 1	-			Concrete
	Light brown to white gravelly sand. Gravel of chalk, flint red		- 1	-			to C
	brick and black carbonaceous		1.0-	-		PID at 1.0mbgl = 0.00	gen
	material.			-		SPT at 1.2mbgl = (4, 4) 5, 5,	
			-	-		5, 6 N = 21	
			-	1			
			2.0-			SPT at 2.1mbgl = (6, 5) 5, 4,	
			- 1	_		6, 9 N = 24	
			- 1	-			
2.00			- 1	-			
3.00	MADE GROUND		3.0-	Δ	3.0m	SPT at 3.0mbgl = (6, 7) 5, 5,	
	Light brown sandy gravel of red				3.1m	5, 6 N = 21	
3.50	brick, flint, chalk and black			1			
	\carbonaceous material.		1 -	1			
	Structureless CHALK composed of		4.0-				
	silty sub-angular to sub-rounded GRAVEL. Clasts are very weak low		4.0			SPT at 4.0mbgl = (4, 5) 6, 5, 5, 4 N = 20	
4.50	density and white. Occasional		4 r –	_		s, i i = 20	
	angular to sub-rounded flint.	╱╧┲╧╧┾┯	- 1	-			
	(Grade Dc?)		-	-			
	Very weak to weak, low to		5.0-	-		PID at 5.0mbgl = 0.00	
	medium density CHALK, white with occasional yellow staining.		- 1	-		11, 14, 16 N = 47	
	occasional yenow stanning.		¢ –	-			
	Occasional bands of flint.						
			6.0-		6.0m		
6.20				A	6.2m		
	Weak, medium density CHALK, white with occasional yellow		-	-			
	staining.		ų –	Т	6.5m 6.7m	SPT at 6.5mbgl = (4, 5) 7, 8, 8, 9 N = 31	
			- 1	-	0.7111	0,	
	Occasional bands of flint.		7.0-	-			
			1 –	1			
]		PID at 7.5mbgl = 0.00	
			- 1	4			
			8.0-	-		SPT at 8.0mbgl = (4, 4) 4, 5,	
			-	-		5, 5 N = 19	
			-	-			
			-	1			
			-	1			
			9.0-	1			
Notes:					ando 20		
	Amber Glass Jar		W	ater Ob	servati	ons:	
	Plastic Tub Glass Vial		N	lo arou	ndwato	encountered.	
D -	Disturbed Sample			io grou	awate	cheountereu.	
	Undisturbed Sample						
	Bulk Sample - Standard Penetration Test						
	- Hand Shear Vane		-				
				ogged b	y: CH	Checked by: ET Approv	ved by: RE

BOREHOLE: BH02

TWEEDIE EVANS CONSULTING LTD The Old Chapel 35a Southover Wells Somerset BA5 1UH

Project Title: Carfax, Winchester

Project No: 1308015.001	
Client: Winchester City Council	

Dates: 23/10/2013

Depth (m)	Description	Legend	Depth (m)	Sample Details	Remarks	Installation	
D D D D D		Legena	۳ ۳	Туре	Depth	Kemarko	Instantion
			-	-	9.5m	SPT at 9.5mbgl = (4, 5) 6, 7,	
			- 10.0-	A T	10.0m 10.2m	9, 9 N = 31 PID at 10.0mbgl = 0.00	
			- - 11.0- - - -	-	10.211	SPT at 11.0mbgl = (6, 6) 6, 8, 16, 20/65mm N >50	3-6mm Pea Gravel
			12.0- - - 13.0- -	-		SPT at 12.5mbgl = (6, 10) 9, 10, 16, 10 N = 45	50mm HPDE pipe
			- 14.0- - -	-		SPT at 14.0mbgl = (11, 14) 9, 10, 9, 6 N = 34	
15.00	Weak to moderately weak, medium to high density CHALK, white with moderate yellow		15.0- - -	-		PID at 15.0mbgl = 0.00	
	staining.		- - 16.0-	-		SPT at 15.5mbgl = (13, 12) 12, 12, 9, 11 N = 34	
			- - 17.0- - - - 18.0-	A	-16.75n -17.0m		
Notes:		— r f			ando 20		
T - V - D - U -	Amber Glass Jar Plastic Tub Glass Vial Disturbed Sample Undisturbed Sample Bulk Sample				oservatio Indwate	ons: r encountered.	
SPT	Standard Penetration TestHand Shear Vane		L	ogged l	oy: CH	Checked by: ET Appro	ved by: RE

BOREHOLE: BH02

TWEEDIE EVANS CONSULTING LTD The Old Chapel 35a Southover Wells Somerset BA5 1UH

Project Title: Carfax, Winchester

Project No: 1308015.001	Dates: 23/10/2013
Client: Winchester City Council	Coordinates:

Depth (m)	Description	Legend	Depth (m)	San Det	nple ails	Remarks		Installation
De De	Description	Legenu	De De	Туре	Depth	Remarks		
			19.0-	-		SPT at 18.5mbgl = (4, 5, 4, 4 N = 18	5) 5,	
20.00	Borehole Terminated		20.0-	_		SPT at 20.0mbgl = (6, 10, 8, 9 N = 37	9) 10,	
	Borenole reminated		-	-		10, 8, 9 N = 37		
			21.0-	-				
			22.0-	-				
			23.0-	-				
			24.0-	-				
			25.0-	-				
			26.0-	-				
			27.0-	-				
T - V - D - U - B - SPT	Amber Glass Jar Plastic Tub Glass Vial Disturbed Sample Undisturbed Sample Bulk Sample - Standard Penetration Test		W	'lant: Da 'ater Ob No grour	servatio			
HSV	- Hand Shear Vane		L	ogged b	y: CH	Checked by: ET	Approv	ved by: RE

BOREHOLE: BH03

TWEEDIE EVANS CONSULTING LTD The Old Chapel 35a Southover Wells Somerset BA5 1UH Project Title: Carfax, Winchester

Project No: 1308015.001

Dates: 24/10/2013 - 25/10/2013

Client: Winchester City Council

Depth (m)	Description	Legend	Depth (m)	Sample Details		Remarks	Installation		
De De	Description	Legenu	De De		Depth	Remarks	Installation		
	Ground Surface		0.0						
0.30	MADE GROUND		0.0	_		PID (ppm) and SPT			
0.00	Reddish brown sandy gravel of		-	-		<u>Results</u>	Concrete		
	Limestone, red brick and charcoal.		-			PID at $0.5mbgl = 0.00$	te j		
	MADE GROUND		-	_			Concr Bentonite		
	White locally yellow gravelly		1.0-			PID at 1.0mbgl = 0.00			
	clayey silt. Gravel of chalk.		1.0			SPT at $1.2mbgl = (8, 9) 10$,	a a		
			-			7, 5, 5 N = 27			
1.70			-			,, <u>,</u> , ,			
1.70	MADE GROUND		-	A	1.7m				
	White locally reddish brown, red		2.0-	<u> </u>	1.9m				
2.30	and black clayey gravel of chalk,		2.0			SPT at 2.1mbgl = (6, 5) 5, 5,			
2.50	red brick, charcoal and flint.		ļ _			6, 7 N = 23			
	Structureless CHALK composed of		¢ _	_					
	silty sub-angular to sub-rounded			_					
	GRAVEL. Clasts are very weak low		3.0-	_		SDT = t 2 0 mbgl = (4 S) S S			
	density and white. Occasional		5.0			SPT at 3.0mbgl = (4, 5) 5, 5, 6, 6 N = 22			
3.50	angular to sub-rounded flint.		-			0, 0 H - 22			
5.50	(Grade Dc?)		-						
	Very weak to weak, low to	┟┲╧┲╴┲┲	l _	1					
	medium density CHALK, white with	┝┍┍┍┍┍	4.0-			SPT at 4.0mbgl = (4, 4) 5, 8,			
	occasional yellow staining.		4.0			7, 8 N = 28			
	Occasional bands of flint.					7, 0 N = 20			
			-	_		PID at 4.5 mbgl = 0.00			
			-						
			5.0-			SPT at 5.0mbgl = (7, 11) 9,			
			5.0	_		9, 8, 10 $\mathbf{N} = 36$			
			-	_		<i>s</i> , <i>s</i> , <i>i</i>			
			-	_					
				-					
6.00			6.0-	-					
	Weak, medium density CHALK,			-					
	white with occasional yellow		- 1	-					
	staining.		- 1	-		SPT at $6.5mbgl = (5, 5) 8, 5,$			
	Occasional bands of flint.		4 –	-		10, 14 N = 37			
			7.0-	4					
				-					
			-	-					
			- 1	-					
			- 1	-					
			8.0-	-		SPT at 8.0mbgl = (10, 13)			
				-		10, 8, 8, 9 N = 25			
			4 -	-		, , , _			
		<mark>│ Ľ ֽ Ľ </mark> Ţ	- 1	4					
			- 1	-					
			9.0-	-		PID at 9.0mbgl = 0.00			
Notes:			I	lant: Dr	ando 20				
			-		servati	**			
	A - Amber Glass Jar T - Plastic Tub		l ^{vv}						
	Plastic Tub Glass Vial		N	No groundwater encountered.					
	Disturbed Sample								
U -	Undisturbed Sample								
	Bulk Sample - Standard Penetration Test								
	ISV - Hand Shear Vane								
				ogged b	y: CH	Checked by: ET Approv	ved by: RE		
						· · · · · · · · · · · · · · · · · · ·			

BOREHOLE: BH03

TWEEDIE EVANS CONSULTING LTD The Old Chapel 35a Southover Wells Somerset BA5 1UH

Project Title: Carfax, Winchester

Project No: 1308015.001

Dates: 24/10/2013 - 25/10/2013

Client: Winchester City Council

Depth (m)	Description	Locond	Depth (m)	Sample Details		Remarks	Installation
De D	Description	Legend	De D		Depth	Remarks	Installation
						SPT at 9.5mbgl = (13, 12/45mm) 22, 18, 10/50mm N >50	
			11.0-			SPT at 11.0mbgl = (6, 7) 5, 11, 11, 14 N =41	3-6mm Pea Gravel
12.00	Weak to moderately weak, medium to high density CHALK, white with moderate yellow staining. Occasional bands of flint.		12.0- - - 13.0-	T	13.0m 13.2m	SPT at 12.5mbgl = (6, 10) 10, 14, 12, 12 N = 48 PID at 13.0mbgl = 0.00	50mm HPDE pipe
			- - 14.0- - -	A	14.0m 14.5m	SPT at 14.0mbgl = (8, 7) 10, 7, 7, 13 N = 37	20
				T	16.0m 16.2m	SPT at 15.5mbgl = (9, 6) 10, 10, 18, 12/55mm N >50	
17.50	Moderately weak, medium to high strength density white CHALK.		- - 17.0- - - -	· · ·		PID at 17.0mbgl = 0.00 9, 31, 5 N = 49	
	Amber Glass Jar				18.0m ando 20 servatio		
V - D - U - B - SPT	Plastic Tub Glass Vial Disturbed Sample Undisturbed Sample Bulk Sample - Standard Penetration Test - Hand Shear Vane		N	lo grou	ndwate	r was encountered.	
1137			Lo	ogged b	y: CH	Checked by: ET Appro	ved by: RE

Project Title: Carfax, Winchester

BOREHOLE: BH03

TWEEDIE EVANS CONSULTING LTD The Old Chapel 35a Southover Wells Somerset BA5 1UH

 Project No: 1308015.001
 Dates: 24/10/2013 - 25/10/2013

 Client: Winchester City Council
 Coordinates:

Depth (m)	Description	Legend	Depth (m)	Det	nple ails	Remarks	Installation
<u>ŏ</u> ÷	• 		٥S	Туре	Depth		
			- - - 19.0-	A	18.2m	SPT at 18.5mbgl = (4, 4) 6, 5, 5, 5 N = 21	
20.00	Borehole Terminated		- - - 20.0-			SPT at 20.0mbgl = (9, 9) 10, 10, 12, 7 N = 39	
			- - 21.0-				
			- - - 22.0				
			- - - 23.0	-			
			- - - 24.0-				
			- - - 25.0-	-			
			- - - 26.0-				
			27.0-			00	
T - V - D - U -	Amber Glass Jar Plastic Tub Glass Vial Disturbed Sample Undisturbed Sample Bulk Sample		W	ater Ob	ando 20 oservatio ndwate		
SPT	Standard Penetration TestHand Shear Vane		Lo	ogged b	oy: CH	Checked by: ET Appro	ved by: RE

BOREHOLE: WS01

TWEEDIE EVANS CONSULTING LTD The Old Chapel 35A Southover Wells Somerset BA5 1UH Project Title: Carfax, Winchester

Project No: 1308015.001

Dates: 22/10/2013

Depth (m)	Description	Legend	. le	San Det	nple ails	Remarks	Installation
De (m	Description	Legenu	0.D. Level		Depth	Reillarks	Installation
	Ground Surface						_
	MADE GROUND Reddish brown sandy gravel of					PID (ppm) and SPT	
0.30	$_{\rm L}$ limestone, flint, red brick and black					PID at 0.2mbgl = 0.00	
	\carbonaceous material (charcoal).						
0.60	MADE GROUND						
	Brown locally reddish brown silty						
	gravelly sand. Gravel of limestone, red brick, chalk and glass.						
1.10	MADE GROUND					PID at 1.0 mbgl = 0.00	
1.30	White locally reddish brown clayey /						
	sandy gravel of chalk and red brick.]				
	MADE GROUND						
	Reddish brown gravel and cobbles of red brick.						
	Structureless CHALK composed of		L				
	gravelly SILT. Gravel is white low to		1			SPT at 2.0mbgl = (11,	12)
	medium density chalk. (Grade Dm?)		1			11, 12, 10, 10 N = 43	12)
2.40			l				
2.70	Weak low to medium density						
	CHALK, white with occasional yellow		1				
	staining and gravel of flint.		1				
			l				
			¢.				
			L.				
			L				
			C				
4.00		- p - p - p				SPT at 4.0mbgl (10, 9)	9 13
	Borehole Terminated					13, 15/60mm N >50	5, 15,
Nete						Daut	
	Notes:				chway servati		
	- Photo-ionisation Detector - Standard Penetration Test						
-	50ml and 60ml Amber Glass Jar			io grou	nawate	r was encountered.	
			Lo	ogged b	y: CH	Checked by: ET	Approved by: RE

BOREHOLE: WS02

TWEEDIE EVANS CONSULTING LTD The Old Chapel 35A Southover Wells Somerset BA5 1UH Project Title: Carfax, Winchester

Project No: 1308015.001

Dates: 22/10/2013

Depth (m)	Description). el	Sample Details		Demonius	Tu she lie ti su
Del Del	Description	Legend	0.D. Level	Туре	Depth	Remarks	Installation
	Ground Surface						
0.20	MADE GROUND					PID (ppm) and SPT	
0.20	Reddish brown sandy gravel of limestone, flint, red brick and black			-		PID at $0.2mbgl = 0.00$	
	carbonaceous material (charcoal).						
0 70	MADE GROUND					PID at 0.6mbgl = 0.00	
0.70	Brown locally reddish brown silty			-		FID at 0.0110gi – 0.00	
1 00	\setminus gravelly sand. Gravel of limestone, /						
1.00	red brick, chalk and glass.	XXXXX		-			
1.15 1.25	MADE GROUND White locally reddish brown clayey			-			
	sandy gravel of chalk and red brick.					SPT at 1.25mbgl = (3, 25, 15, 10/30mm N >	
	MADE GROUND					23, 13, 10, 30mm N × 3	
	Light brown locally white sandy						
	gravel of chalk and red brick.						
	MADE GROUND Reddish brown cobbles of red brick.						
	Borehole Terminated						
Notes			1	lant: Ar	chway	Dart	I
			Vater Ob				
	SPT - Standard Penetration Test						
	A - 250ml and 60ml Amber Glass Jar			No groundwater was encountered.			
Boro	hole terminated on obstruction recovere	ad as					
	bles of red brick						
			L				
			l	ogged b	y: CH	Checked by: ET	Approved by: RE

BOREHOLE: WS03

TWEEDIE EVANS CONSULTING LTD The Old Chapel 35A Southover Wells Somerset BA5 1UH Project Title: Carfax, Winchester

Project No: 1308015.001

Dates: 22/10/2013

Depth (m)	Description	Legend	0.D. Level	Det	nple ails Depth		Remarks		Installation
0.10	Ground Surface MADE GROUND			Type	Deptil	PI	D (ppm) and SPT		
	Reddish brown sandy gravel of limestone, flint, red brick and black carbonaceous material (charcoal).						o at 0.2mbgl = 0.00	Concrete ⁻	
0.70	MADE GROUND Brown locally reddish brown silty gravelly sand. Gravel of limestone, red brick, chalk and glass. MADE GROUND			-		PII	D at 1.0mbgl = 0.00		vel Bentoni
1.50	White locally reddish brown clayey sandy gravel of chalk and red brick. Structureless CHALK composed of			_					Pea Grav
2.00	white gravelly SILT. Gravel is white low to medium density chalk. (Grade Dm?)								3-6mm Pea Gravel
	Weak low to medium density CHALK, white with occasional yellow staining.					SP 11	T at 2.0mbgl = (8, 9) , 9, 9 N = 37) 8,	
	Occasional coarse flint gravel from 3.7mbgl.								50mm HPDE pipe 3-6mm H
						SP 5,	T at 4.0mbgl (11, 10 6 N = 26) 8, 7,	
5.00	Borehole Terminated					SP 10	T at 5.0mbgl = (10, , 10, 15, 15/50mm №	10) I >50	
Notes	::		P	 lant: Ar	chway I	Dart			
PID - SPT -	 • Photo-ionisation Detector • Standard Penetration Test 50ml and 60ml Amber Glass Jar		W	ater Ob	servatio	ons:			
			L	ogged b	y: CH		Checked by: ET	Approv	red by: RE

BOREHOLE: WS04

TWEEDIE EVANS CONSULTING LTD The Old Chapel 35A Southover Wells Somerset BA5 1UH Project Title: Carfax, Winchester

Project No: 1308015.001

Dates: 22/10/2013

Depth (m)	Description	Legend	0.D. Level	Det	nple ails	Remarks	Installation
	Cround Surface			Туре	Depth		
0.10	Ground Surface MADE GROUND					PID (ppm) Results	
	Reddish brown sandy gravel of					PID at 0.3 mbgl = 0.00	
	limestone, flint, red brick and black / carbonaceous material (charcoal).						
0.70	MADE GROUND						
0.70	Brown locally reddish brown silty \ gravelly sand. Gravel of limestone, /						
1.00	red brick, chalk and glass.					PID at 1 0mbal -0.00	
	MADE GROUND					PID at 1.0mbgl = 0.00	
	White locally reddish brown clayey sandy gravel of chalk and red brick.						
1.45	MADE GROUND						
	White locally reddish brown and						
	brown clayey gravel of chalk, red						
	MADE GROUND						
	Reddish brown cobbles of red brick.						
	Borehole Terminated						
	Notes:				chway servatio		
	Photo-ionisation Detector Standard Penetration Test						
-	50ml and 60ml Amber Glass Jar			io grou	nuwate	r was encountered.	
	nole terminated on obstruction recovere les of red brick.	ed as					
	ies of red DHCK.						
			Lo	ogged b	y: CH	Checked by: ET Appro	ved by: RE

BOREHOLE: WS05

TWEEDIE EVANS CONSULTING LTD The Old Chapel 35A Southover Wells Somerset BA5 1UH Project Title: Carfax, Winchester

Project No: 1308015.001

Dates: 23/10/2013

Depth (m)	Description	Logond). /el		nple ails	Remarks		Installation
Del Del	Description	Legend	0.D. Level		Depth	Remarks		Installation
	Ground Surface							
	MADE GROUND					PID (ppm) and SPT		
0.30	Tarmacadam hardstanding.			_		PID at 0.3 mbgl = 0.00		
	MADE GROUND Reddish brown slightly clayey sandy	/******						
0.60	gravel of limestone, red brick and			-				
0.70	charcoal.			-				
0.95								
	Brown locally dark brown and yellow sandy gravel of limestone,					SPT at 1.0mbgl = (6, 7) 6, 7,	
	tarmacadam, flint, red brick and					6, 7 N = 23		
	charcoal.	│ <mark>──[┍]┍──┍</mark> ┙						
1.50	MADE GROUND			-		PID at 1.5mbgl = 0.00		
	Dark brown locally light brown clayey gravel of red brick, charcoal,					-		
	flint and chalk.							
2.00	MADE GROUND	│ └┍└╶└┍╵ │ ╟╟╟╟ ╎		_				
	Brown locally white slightly sandy							
	gravelly silty clay. Gravel of chalk, charcoal, flint and red brick.							
	Structureless CHALK composed of white slightly gravelly SILT. Gravel							
	is very weak to weak low density							
	chalk. Occasional gravel of flint.							
	(Grade Dm?)					SPT at 3.0mbgl = (8, 7 9, 9 N = 33)7,8,	
	Very weak to weak low to medium density CHALK, white locally					<i>9, 9</i> N – 35		
	speckled black with frequent brown							
	staining. Occasional cobble of flint.							
	Weak low to medium density							
	CHALK, white with localised pockets of brown staining.							
	e. 2. e e.ag.							
5.00								
	Borehole Terminated					SPT at 5.0mbgl = (21, 4/5mm) 24, 26/50mm	NS	
						50		
Notes	5:		Р	lant: Ar	chway	Dart		
PID - Photo-ionisation Detector		W	ater Ob	servati	ons:			
-	- Standard Penetration Test		r	No grou	ndwate	r was encountered.		
A - 2	250ml and 60ml Amber Glass Jar							
				ogged b		Checked by: ET	Approv	ed by: RE
1				oggeu L	//· CII			

BOREHOLE: WS06

TWEEDIE EVANS CONSULTING LTD The Old Chapel 35A Southover Wells Somerset BA5 1UH Project Title: Carfax, Winchester

Project No: 1308015.001

Dates: 23/10/2013

Depth (m)	Description	Legend	0.D. Level		nple ails	Remarks	Installation
<u> </u>			Ľ٥	Туре	Depth		
	Ground Surface		-			PID (ppm) and SPT	
0.25	Tarmacadam hardstanding.	′ <u>×××××</u>				PID at 0.3mbgl = 0.00	e li
0.70	MADE GROUND Reddish brown slightly clayey sandy gravel of limestone, red brick and charcoal.					-	Concrete Gravel Bentonite
	MADE GROUND Dark brown locally white sandy gravelly silty clay. Gravel of flint, chalk and red brick.						Pea
1.80	MADE GROUND White locally red sandy gravelly clay. Gravel of chalk and red brick.						50mm HPDE pipenn
1.90	Cobbles of flint.	۱۵۲۹ ۲۵۵۲ ۲۰۲۲ ۲۰	1	-			E
2.65	Very weak to weak low to medium density CHALK, white locally speckled black with frequent brown staining. Occasional cobble of flint.					SPT at 2.0mbgl = (4, 6) 6, 6, 5, 6 N = 23	501
3.50	Weak low to medium density CHALK, white with localised pockets of brown staining.			-			
5.00	Weak medium density CHALK, white with occasional brown staining.					SPT at 4.0mbgl = (9, 6) 6, 5, 6, 5 N = 22	
	Borehole Terminated						
Notes	:		P	ant: Ar	chway	Dart	
SPT -	Photo-ionisation Detector - Standard Penetration Test 50ml and 60ml Amber Glass Jar		W	ater Ob	servati		
				ogged b	y: CH	Checked by: ET Appro	ved by: RE

BOREHOLE: WS07

TWEEDIE EVANS CONSULTING LTD The Old Chapel 35A Southover Wells Somerset BA5 1UH Project Title: Carfax, Winchester

Project No: 1308015.001

Dates: 23/10/2013

금			. 7	Sar	nple		
Depth (m)	Description	Legend	0.D. Level		ails Depth	Remarks	Installation
	Ground Surface			Type	Depth		
0.10	MADE GROUND					PID (ppm) and SPT	
0.30	ackslashDark brown slightly sandy silt. /					<u>Results</u>	
	MADE GROUND					PID at 0.3 mbgl = 0.00	
	Light brown locally orange brown	┝╨┲╨╌╨┲┙					
	gravelly silty clay. Gravel of flint, red brick, charcoal and rare glass.						
	Very weak to weak, low to medium]				
	density CHALK, white with					CDT = t + 1 Ombel (E + 1) E + 1	
	moderate brown staining.					SPT at 1.0mbgl = (5, 4) 5, 4 4, 6 N = 19	'
						.,	
1.70							
	Weak low to medium density CHALK, white with occasional brown						
	staining.						
						SPT at 3.0mbgl = (7, 7) 10,	
						9, 8, 7 N = 34	
3.60							
5.00	Weak medium density CHALK, white						
	with occasional brown staining.						
	Occasional gravel of flint.					SPT at 4.0mbgl (12, 5) 5, 4, 3, 4 N = 16	
						5, 11 20	
5.00						SPT at 5.0mbgl = (8, 6) 5, 7	,
	Borehole Terminated					6, 7 N = 24	
Notes			ים	ant: Ar	chway /	Dart	
					chway servatio		
	Photo-ionisation Detector Standard Penetration Test						
	50ml and 60ml Amber Glass Jar			io grou	nuwate	r was encountered.	
			La	ogged k	y: CH	Checked by: ET Appr	roved by: RE
L				55	,	,	

BOREHOLE: WS08

TWEEDIE EVANS CONSULTING LTD The Old Chapel 35A Southover Wells Somerset BA5 1UH Project Title: Carfax, Winchester

Project No: 1308015.001

Dates: 23/10/2013

ţ			<u>. a</u>	Sample Details				
Depth (m)	Description	Legend	0.D. Level	Type	Depth	Remarks	Installation	
	Ground Surface			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Deptit			
	MADE GROUND					PID (ppm) Results		
	Dark brown slightly sandy silt.							
0.55								
0.55	MADE GROUND			-		PID at 0.5mbgl = 0.00		
0.87	Light brown speckled white locally							
	yellowish brown slightly sandy slightly clayey gravelly silt. Gravel			1				
	of red brick, chalk and concrete.							
	MADE GROUND							
	Light grey concrete.							
	Borehole Terminated							
Neta			,			Dout		
	Notes: PID - Photo-ionisation Detector			Plant: Archway Dart Water Observations:				
	SPT - Standard Penetration Test			No groundwater was encountered.				
	250ml and 60ml Amber Glass Jar			_ <u>_</u> u				
Bore	hole terminated at 0.9mbgl on concrete							
				.ogged b	v: CH	Checked by: ET	Approved by: RE	

BOREHOLE: WS09

TWEEDIE EVANS CONSULTING LTD The Old Chapel 35A Southover Wells Somerset BA5 1UH Project Title: Carfax, Winchester

Project No: 1308015.001

Dates: 23/10/2013

Depth (m)	Description	Legend	vel.	San Det	nple ails	Remarks	Installation		
De (m	Description	Legenu	0.D. Level		Depth	Remarks	Installation		
	Ground Surface					PID (ppm) and SPT			
0.20	MADE GROUND Dark brown slightly sandy silt.					Results			
	Structureless CHALK composed of								
0.60	slightly sandy SILT. White with occasional brown staining. (Grade					PID at $0.5mbgl = 0.00$			
	Dm?)								
	Very weak to weak low to medium density white CHALK. Occasional								
	flint gravel.	┶┲┶ <u>┶</u> ┲┙				SPT at 1.0mbgl = (4, 4) 4, 4, 4, 5 N = 17			
						,			
2.10						CDT at 2.1 mb al (25.0 mm)			
	Borehole Terminated					SPT at 2.1mbgl = (25/0mm) 50/0mm N > 50			
Note					chucy	Dart			
	Notes: PID - Photo-ionisation Detector SPT - Standard Penetration Test			Plant: Archway Dart Water Observations:					
SPT				No groundwater was encountered.					
A - 2	A - 250ml and 60ml Amber Glass Jar								
Bore	hole terminated at 0.9mbgl on concrete.								
			Lo	ogged b	y: CH	Checked by: ET Appro	oved by: RE		

BOREHOLE: WS10

TWEEDIE EVANS CONSULTING LTD The Old Chapel 35A Southover Wells Somerset BA5 1UH Project Title: Carfax, Winchester

Project No: 1308015.001

Dates: 23/10/2013

Depth (m)	Description	Legend	D. /el	San Det	nple ails	Remarks	Installation	
Del Del	Description	Legenu	0.D. Level		Depth	Remarks	Installation	
	Ground Surface							
0.10	MADE GROUND Dark brown slightly sandy silt.			-		PID (ppm) and SPT PID at 0.1mbgl = 0.00		
	Structureless CHALK composed of						ete	
	slightly sandy SILT. White with						Concrete	
	occasional brown staining and occasional flint gravel (Grade Dm?).						Bentonite	
		┝┸┲┶ <u>┸</u> ┲┚					Ber	
						SPT at 1.0mbgl = (10, 11		
						10, 8, 6, 6 N = 30	Gravel	
							- B	
							3-6mm Pea	
							E E	
2 10							3-6	
2.10	Borehole Terminated			-		SPT at 2.1mbgl = (25/0m	nm)	
	borenole renninated					50/0mm N > 50	bipe	
							DE	
							Ξ	
							50mm HPDE	
							5(
Notes	5:			Plant: Ar				
	- Photo-ionisation Detector - Standard Penetration Test			/ater Ob				
	A - 250ml and 60ml Amber Glass Jar			No groundwater was encountered.				
Bore	hole terminated at 0.9mbgl on concrete							
		•						
				.ogged b	v: CH	Checked by: ET A	Approved by: RE	
					,			

BOREHOLE: WS11

TWEEDIE EVANS CONSULTING LTD The Old Chapel 35A Southover Wells Somerset BA5 1UH Project Title: Carfax, Winchester

Project No: 1308015.001

Dates: 24/10/2013

Depth (m)	Description	Legend	0.D. Level	Det	nple tails Depth		Remarks		Insta	allation
	Ground Surface									
	MADE GROUND					<u>P</u>]	ID (ppm) and SPT			
0.30	Reddish brown sandy gravel of	/\`````````````````````````````````````				R	esults	`	e 💾	
0.50	limestone and flint.	′ ⊯₩₩₩		-			1D at 0.25 mbgl = 0.00)	Concrete	
	MADE GROUND								L a	
	Light brown speckled white gravely	/ 🛛 🕬							S Ë	
	sand. Gravel of limestone, chalk,	/ 🛛 🕬							l 5	
	flint and red brick.								Bentonite	
1.05	MADE GROUND									
1.05	White locally brown gravelly silt.			-						
	Gravel of chalk.	/ 🛛 🕬								
	MADE GROUND									
	Brown locally white gravelly clay.									
1.60	Gravel of chalk, flint and red brick.			_			ID at 1.5 mbgl = 0.00			
	MADE GROUND									
	White gravelly clayey silt. Gravel of chalk and flint.									
]			망	PT at 2.0mbgl = (8, 9) , 6 N = 27) 8, 6,		•
						''	$0 \mathbf{N} - \mathbf{Z}$		່ອ 🛛	
									pipe	
									ш 🛛	
2.70									1	
2.70				-					50mm HPDE	
	MADE GROUND								1 LL	
2.95	Light brown slightly gravelly sandy \ clay. Gravel of fine black			-					jo 🛛	
	carbonaceous material (charcoal).	╱╘┯┸┯╶┯┸┑							U ,	
			L							
	Weak low to medium density		l l							1
	CHALK, white with occasional yellow		L			п	ID at 3.5 mbgl = 0.00			
	staining.		l I				iD at 5.5mbyr – 0.00			Ē
		╶┝┸┲┸┲┙	L						Gravel	E
			[Ъ.	E.
						CI	PT at 4.0mbgl = (6, 5)	168		1
							0, 13 N = 37	, 0, 0,	3-6mm Pea	1
						1	5, 15 N - 57		Ē	
									6π	Ē
			1						μ.	1
										3
										1
										1
5.00				_		SE	PT at 5.0mbgl = (10, 1	11)		
	Borehole Terminated						1, 10, 9, 8 N = 38)		
							_,, _, _,			
lotes	:		F	lant: Ar	chway	Dar	t			
- חזפ	- Photo-ionisation Detector			/ater Ob						
	- Standard Penetration Test			No arou	ndwato	r w	as encountered.			
	50ml and 60ml Amber Glass Jar			NO GIOU	nuwate	I VV C	as encountered.			
			\vdash				a 1			
			L	ogged b	oy: CH		Checked by: ET	Approv	ed by	: RE

BOREHOLE: WS12

TWEEDIE EVANS CONSULTING LTD The Old Chapel 35A Southover Wells Somerset BA5 1UH Project Title: Carfax, Winchester

Project No: 1308015.001

Dates: 24/10/2013

Depth (m)	Description	Legend	0.D. Level	San Det	nple ails	Remarks	Installation
Ωe T		Legene	Le.		Depth		Instantieren
	Ground Surface						
	MADE GROUND Reddish brown sandy gravel of	/				PID (ppm) and SPT Results	
0.30	limestone and flint.			-		Kesuks	
	MADE GROUND	/				PID at 0.5mbgl = 0.00	
	Dark brown locally white sandy					Fib at 0.5mbgi = 0.00	
	gravelly silt. Gravel of flint, chalk, red brick, charcoal and rare plastic.						
1.00	MADE GROUND						
	\setminus White slightly gravelly silt. Gravel of $_{/}$	╱ <mark>┍╵┍╶┍╶┍</mark> ┝┲┸┲╌┲┸┧				SPT at 1.0mbgl = (5, 5) 5, 4, 4, 4 N = 17	
	chalk and rare red brick.					,	
	Very weak to weak low to medium density CHALK, white speckled						
	brown. Occasional gravel of flint.						
	-						
2.00							
	Borehole Terminated			1		SPT at 2.0mbgl = (6, 6) 6, 6, 6, 6 N = 24	
						o, o it = 24	
Notes	5:		P	lant: Ar	chway	Dart	
PID - Photo-ionisation Detector				ater Ob	servati	ons:	
-	- Standard Penetration Test		r	lo grou	ndwate	r was encountered.	
A - 2	250ml and 60ml Amber Glass Jar						
				ogged b	y: CH	Checked by: ET Appr	oved by: RE

BOREHOLE: WS13

TWEEDIE EVANS CONSULTING LTD The Old Chapel 35A Southover Wells Somerset BA5 1UH Project Title: Carfax, Winchester

Project No: 1308015.001

Dates: 24/10/2013

Depth (m)	Description	Legend	0.D. Level	Det	nple ails Depth	-	Remarks		Installation
	Ground Surface								
	MADE GROUND					PI	D (ppm) and SPT		
0.30	Reddish brown sandy gravel of			1		Re	culte		
0.30	Vimestone and flint.			-			O at 0.25 mbgl = 0.00) .	Loncrete
	MADE GROUND								
	Reddish brown cobbles of red brick.						D at 0.5 mbgl = 0.00	(
	MADE GROUND								Bentonite
	Dark brown locally white sandy								ger
1.00	gravelly silt. Gravel of flint, chalk,							10	
	red brick, charcoal and rare plastic.						T at 1.0mbgl = (5, 6) 8, 8 N = 34) 10,	
	MADE GROUND	/ <mark>├└──└──└──</mark>				0,	$0, 0 \mathbf{N} = 34$		Gravel
	White slightly gravelly silt. Gravel of								5
	chalk and rare red brick.								g
									3-6mm Pea
	Very weak to weak low to medium density CHALK, white speckled								E
	brown. Occasional gravel of flint.								6u
2.05	Sterrin occasional graver of finiti								μ.
	Weak medium density CHALK, white			1					
	with occasional yellow staining.								pipe
	Occasional flint gravel.								
									8
									50mm HPDE
									E
									E
							T at 3.0mbgl = (17,		20
							35mm) 15, 10, 9, 8 🛚	N =	Ē
						42	2		Ē
		┲┲┲┲┲┲							Ē
									Ē
									Ē
									Ē
									Ē
									Ē
4.80									
	Weak medium density CHALK, white			1					
5.00	with localised pockets of orange			-		SP	T at 5.0mbgl = (10, 1	10)	Ē
	staining. Occasional flint gravel.	΄					, 10, 8, 14 N = 43		
	Borehole Terminated						–		
Notes	5:		P	lant: Ar	chway I	Dart			
- חזק	- Photo-ionisation Detector		W	ater Ob	servati	ons:			
	- Standard Penetration Test		l r	lo arou	ndwate	r wa	s encountered.		
A - 2	50ml and 60ml Amber Glass Jar		'						
			-				Charled by: FT	An	
				ogged b	y: CH		Checked by: ET	Approv	ed by: RE

BOREHOLE: WS14

TWEEDIE EVANS CONSULTING LTD The Old Chapel 35A Southover Wells Somerset BA5 1UH Project Title: Carfax, Winchester

Project No: 1308015.001

Dates: 24/10/2013

Depth (m)	Description	Legend	0.D. Level	Det	nple ails Depth	Remarks		Installation
	Ground Surface			туре	Depti			
	MADE GROUND					PID (ppm) and SPT		
0.30	\setminus Reddish brown sandy gravel of $/$					\overline{PID} at 0.2mbgl = 0.00		
0.50	limestone and flint.							
	MADE GROUND							
	Dark brown locally white slightly							
0.90	clayey sandy gravel of chalk, flint, red brick, rare concrete and rare					PID at 1.0mbgl = 0.00		
	charcoal.					_		
1.10	MADE GROUND					SPT at 1.0mbgl = $(6, 8)$	7,7,	
IN	Brown to dark brown locally white					7, 6 N = 27		
	slightly sandy gravelly clay. Gravel							
	of flint, red brick, chalk, charcoal							
	and ceramic.							
	MADE GROUND White locally brown clayey gravel of							
	chalk, flint, red brick and charcoal.							
	MADE GROUND							
	White gravelly clayey silt. Gravel of							
	chalk.							
2.95	MADE GROUND	je po				SPT at 3.0mbgl = (10,		
IN	Yellow locally white silty gravelly					15/65mm) 20, 13, 17/7	5mm	
	sand. Gravel of flint, and chalk.					N > 50		
	Borehole Terminated							
Notes	:				chway l			
	Photo-ionisation Detector		W	ater Ob	servati	ons:		
-	Standard Penetration Test		N	lo grou	ndwate	r was encountered.		
A - 2	50ml and 60ml Amber Glass Jar							
Borel	nole terminated on gravel of flint.							
	tere terminated on graver of fille.							
			Lo	ogged b	y: CH	Checked by: ET	Approv	ed by: RE

BOREHOLE: WS15

TWEEDIE EVANS CONSULTING LTD The Old Chapel 35A Southover Wells Somerset BA5 1UH Project Title: Carfax, Winchester

Project No: 1308015.001

Dates: 24/10/2013

Depth (m)	Description	Legend	0.D. Level	Det	nple ails Depth	Remarks	Installation
	Ground Surface			Турс	Deptii		
	MADE GROUND	******		<u> </u>		PID (ppm) and SPT	
0.20	Reddish brown sandy gravel of	/				Results	
0.30	limestone and flint.			-		PID at 0.25 mbgl = 0.00	0
0.50	MADE GROUND						
	Dark brown locally light brbown]			
	sandy gravelly clay. Gravel of chalk,					PID at 0.75mbgl = 0.00	n
	flint, red brick and charcoal.					11D at 0.7511bg1 = 0.00	
	MADE GROUND						
	Light brown locally white gravelly						
	silt. Gravel of chalk and rare red brick.						
	(Possible made ground) White locally yellow stained gravelly SILT.						
	Gravel is very weak low density						
1.90	chalk.						
	Borehole Terminated]		SPT at 1.9mbgl = (20, 5/25mm) 20, 16, 12,	
						2/10mm N >50	
						_, _ • • • • • • • • • • • • • • • • • •	
Notes	S:		Р	lant: Ar	chway I	Dart	
חזק	PID - Photo-ionisation Detector SPT - Standard Penetration Test A - 250ml and 60ml Amber Glass Jar				servati		
				No groundwater was encountered.			
Bore	hole terminated at 1.9mbgl on flint.						
				ogged b	y: CH	Checked by: ET	Approved by: RE
				55	,		

HAND DUG TRIAL PIT RECORD

LOCATION: HDP1

TWEEDIE EVANS CONSULTING LTD The Old Chapel 35A Southover Wells Somerset BA5 1UH

Г

Project Title: Carfax, Winchester

TD	Project No: 1308015.001	Dates: 21/10/2013
	Client: Winchester City Council	Coordinates:

Depth (m)	Deceristics	1	el.	San	nple ails	Demonto	
Del Del	Description	Legend	0.D. Level		Depth	Remarks	
	Ground Surface						
	MADE GROUND					PID (ppm) Results	
0.30	Black gravelly clay. Gravel of red			-		PID @ 0.25mbgl = 0.0	
	material (charcoal).						
0 74	MADE GROUND						
0.74	Reddish brown sandy gravel of limestone, chert and red brick.			-			
	MADE GROUND						
	Light brown locally brown sandy						
	clayey gravel of flint and red brick.						
	Hand Dug Pit Terminated						
Notes	5:			quipme			
PID	- Photo-Ionisation Detector			'ater Ob			
				No grou	ndwate	r was encountered.	
	erminated at 0.74mbgl due to the prese						
cond	crete - likely to be associated to the top	of a UST	.				
			L	ogged b	y: CH	Checked by: ET Approved by: RE	

HAND DUG TRIAL PIT RECORD

LOCATION: HDP2

TWEEDIE EVANS CONSULTING LTD The Old Chapel 35A Southover Wells Somerset BA5 1UH Project Title: Carfax, Winchester

٢D	Project No: 1308015.001	Dates: 21/10/2013
	Client: Winchester City Council	Coordinates:

Depth (m)	Description	1	el .	Sample Details		Remarks	
Del	Description	Legend	0.D. Level		Depth	Remarks	
	Ground Surface						
	MADE GROUND					PID (ppm) Results	
0.30	Black gravelly clay. Gravel of red brick, flint and black carbonaceous					PID at 0.3mbgl = 0.00	
	material (charcoal).					112 at olomby. oloo	
0.60	MADE GROUND						
	Reddish brown sandy gravel of						
1.00	Imestone, chert and red brick. MADE GROUND						
	Light brown locally brown sandy	******					
	clayey gravel of flint and red brick.						
	MADE GROUND						
	Reddish brown cobbles and						
	boulders of red brick.						
	Hand Dug Pit Terminated						
Notes			 		nti Sna	do	
					nt: Spa servatio		
PID	- Photo-Ionisation Detector						
1				vo grou	nuwate	r was encountered.	
Pit t	erminated at 1.0mbgl due to refusal on	red brick	.				
1							
			L	ogged b	y: CH	Checked by: ET	Approved by: RE

HAND DUG TRIAL PIT RECORD

LOCATION: HDP3

TWEEDIE EVANS CONSULTING LTD The Old Chapel 35A Southover Wells Somerset BA5 1UH Project Title: Carfax, Winchester

D	Project No: 1308015.001	Dates: 23/10/2013
	Client: Winchester City Council	Coordinates:

Depth (m)	Description	Legend	. e	Sample Details		Remarks	
De De	Description	Legenu	0.D. Level	Туре	Depth	Renarks	
	Ground Surface						
	MADE GROUND					PID (ppm) Results	
0.30	Reddish brown sandy gravel of					<u> </u>	
0.50	limestone, chert and red brick.						
0.50	MADE GROUND			_		PID at $0.5mbgl = 0.00$	
	Dark brown speckled white sandy gravelly clay. Gravel of red brick,	/					
	flint and chalk.	′ 🐹 🗱					
	MADE GROUND						
1 24	Reddish brown cobbles and						
1.24	boulders of red brick.			_			
	Hand Dug Pit Terminated						
Notes	5:			Equipme	nt: Spa	de	
	- Photo-Ionisation Detector			Vater Ob			
	- FIIOLO-IOIIISALIOIT DELECLOF					r was encountered.	
						in this checultered.	
Pit t	erminated at 1.24mbgl due to the abso	ence of a					
tank	c - understood to be at approximately :	.0mbgl.					
				Logged b	y: CH	Checked by: ET	Approved by: RE

APPENDIX G

Geochemical Certificates of Analysis

Claire Hooley Tweedie Evans Consulting Ltd The Old Chapel 35a Southover Wells Somerset BA5 1UH

t: 01749 677 760 f: 01749 679 345 e: claire.hooley@tecon.co.uk

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

Analytical Report Number : 13-47613

Project / Site name:	Carfax , Winchester	Samples received on:	23/10/2013
Your job number:	1308015.001	Samples instructed on:	30/10/2013
Your order number:		Analysis completed by:	14/11/2013
Report Issue Number:	1	Report issued on:	14/11/2013
Samples Analysed:	17 soil samples		

1t Signed:

Thurstan Plummer Organics Technical Manager For & on behalf of i2 Analytical Ltd.

Other office located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

Excel copies of reports are only valid when accompanied by this PDF certificate.

Signed:

Rexona Rahman Customer Services Manager For & on behalf of i2 Analytical Ltd.

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Lab Sample Number				295005	295006	295007	295008	295009
Sample Reference	BH03	WS11	WS14	WS05	HDP4			
Sample Number			None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)	1.7	1.20-1.30	0.10-0.20	0.30-0.40	0.30-0.50			
Date Sampled				24/10/2013	24/10/2013	24/10/2013	22/10/2013	23/10/2013
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	18	13	9.5	4.2	5.7
Total mass of sample received	kg	0.001	NONE	0.48	0.47	0.43	0.48	0.54
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics					7		T	
pH	pH Units	N/A	MCERTS	8.6	8.4	8.4	8.6	8.6
Electrical Conductivity	µS/cm	10	NONE	-	-	-	70	80
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Complex Cyanide	mg/kg	1	NONE	-	-	-	< 1	< 1
Free Cyanide	mg/kg	1	NONE	-	-	-	< 1	< 1
Total Sulphate as SO ₄	mg/kg	100	ISO 17025	800	810	620	790	510
Water Soluble Sulphate (Soil Equivalent)	g/l	0.0025	MCERTS	0.050	0.038	0.021	0.023	0.022
Water Soluble Sulphate as SO ₄ (2:1)	mg/kg	2.5	MCERTS	50	38	21	23	22
Water Soluble Sulphate (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.025	0.019	0.011	0.012	0.011
Sulphide	mg/kg	1	MCERTS	< 1.0	< 1.0	6.8	13	14
Water Soluble Chloride (2:1) Ammonium as NH₄	mg/kg	5 5	MCERTS MCERTS	-	-	-	51 6.2	35 7.1
	mg/kg	0.00001		-	-	-	-	
Fraction Organic Carbon (FOC) Total Organic Carbon (TOC)	N/A %	0.00001	NONE MCERTS	- 0.2	0.9	- 0.8	0.0035	0.0005
Total Phenois	70	0.1	PICEICIS	0.2	0.5	0.0	0.4	< 0.1
Total Phenols (monohydric)	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Acenaphthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Phenanthrene	mg/kg	0.2	MCERTS	< 0.20	1.7	< 0.20	< 0.20	< 0.20
Anthracene	mg/kg	0.1	MCERTS	< 0.10	0.34	< 0.10	< 0.10	< 0.10
Fluoranthene	mg/kg	0.2	MCERTS	< 0.20	3.0	0.85	0.51	< 0.20
Pyrene	mg/kg	0.2	MCERTS	< 0.20	2.5	0.72	0.45	< 0.20
Benzo(a)anthracene	mg/kg	0.2	MCERTS	< 0.20	1.2	0.50	0.43	< 0.20
Chrysene	mg/kg	0.05	MCERTS	< 0.05	1.2	0.38	0.28	< 0.05
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	1.4	0.71	0.46	< 0.10
Benzo(k)fluoranthene	mg/kg	0.2	MCERTS	< 0.20	0.91	0.33	0.25	< 0.20
Benzo(a)pyrene	mg/kg	0.1	MCERTS	< 0.10	1.3	0.39	0.27	< 0.10
Indeno(1,2,3-cd)pyrene	mg/kg	0.2	MCERTS MCERTS	< 0.20	0.43	< 0.20 < 0.20	< 0.20 < 0.20	< 0.20
Dibenz(a,h)anthracene	mg/kg				< 0.20 0.54			
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	0.54	< 0.05	< 0.05	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	1.6	MCERTS	< 1.6	15	4.0	2.8	< 1.6
	mg/kg	1.0	PICEINIS	< 1.0	15	-1.0	2.0	< 1.0

Project / Site name: Carfax , Winchester

Lab Sample Number				295005	295006	295007	295008	295009
Sample Reference				BH03	WS11	WS14	WS05	HDP4
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)				1.7	1.20-1.30	0.10-0.20	0.30-0.40	0.30-0.50
Date Sampled				24/10/2013	24/10/2013	24/10/2013	22/10/2013	23/10/2013
Time Taken	-			None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids	-	-	-				-	
Antimony (aqua regia extractable)	mg/kg	1	ISO 17025	-	-	-	1.3	1.2
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	2.8	5.3	9.5	19	9.8
Barium (aqua regia extractable)	mg/kg	1	MCERTS	19	66	140	350	250
Beryllium (aqua regia extractable) Boron (water soluble)	mg/kg	0.06	MCERTS	0.2	0.6	0.8	0.2 < 0.2	0.3
Cadmium (aqua regia extractable)	mg/kg mg/kg	0.2	MCERTS MCERTS	0.2	0.6	1.1 0.5	2.6	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	-	-	-	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	3.7	13	24	7.4	9.5
Cobalt (aqua regia extractable)	mg/kg	0.15	MCERTS	-	-	-	1.6	1.7
Copper (aqua regia extractable)	mg/kg	1	MCERTS	6.5	26	56	6.8	12
Iron (aqua regia extractable)	mg/kg	40	MCERTS	-	-	-	6700	5100
Lead (aqua regia extractable)	mg/kg	2	MCERTS	15	75	250	100	87
Manganese (aqua regia extractable)	mg/kg	1	MCERTS	-	-	-	460	250
Mercury (aqua regia extractable) Molybdenum (aqua regia extractable)	mg/kg mg/kg	0.3	MCERTS MCERTS	< 0.3	< 0.3	0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg mg/kg	2	MCERTS	4.8	- 14	- 29	6.5	8.6
Phosphorus (aqua regia extractable)	mg/kg	20	NONE	-	-	- 25	240	440
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tin (aqua regia extractable)	mg/kg	1	MCERTS	-	-	-	< 1.0	2.2
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	6.5	19	36	19	12
Zinc (aqua regia extractable)	mg/kg	2	MCERTS	27	83	170	350	170
	-							
Calcium (aqua regia extractable)	mg/kg	20	NONE	-	-		430000	170000
Magnesium (aqua regia extractable) Potassium (aqua regia extractable)	mg/kg mg/kg	20 20	ISO 17025 NONE	-	-	-	16000 460	21000 520
Sodium (aqua regia extractable)	mg/kg	20	NONE	-	-	-	190	200
Monoaromatics								
Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene o-xylene	µg/kg	1	MCERTS MCERTS	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0	< 1.0 < 1.0	< 1.0 < 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons Mineral Oil (C10 - C40)	mg/kg	10	NONE	-	-	-	22	< 10
TPH1 (C10 - C40)	mg/kg	10	MCERTS	< 10	29	< 10	170	< 10
TPH2 (C6 - C10)	mg/kg	0.1	NONE	-	-	-	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21	mg/kg mg/kg	2	MCERTS MCERTS	< 2.0 < 8.0	< 2.0 < 8.0	< 2.0 < 8.0	< 2.0 < 8.0	< 2.0 < 8.0
TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC21 - EC35	mg/kg mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	23	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	23	< 10
							- · ·	
TPH-CWG - Aromatic > EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC7 - EC8 TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS MCERTS	< 0.1	< 0.1	< 0.1	< 0.1 < 0.1	< 0.1
TPH-CWG - Aromatic >EC10 TPH-CWG - Aromatic >EC10 - EC12	mg/kg mg/kg	0.1	MCERTS	< 1.0	< 0.1	< 0.1 < 1.0	< 0.1	< 0.1 < 1.0
TPH-CWG - Aromatic >EC10 - EC12 TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	13	< 10	< 10	< 10
		4.0		10		10		. 10
TPH-CWG - Aromatic >EC21 - EC35 TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10 10	MCERTS	< 10 < 10	14 27	< 10 < 10	98 98	< 10 < 10

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Lab Sample Number				295005	295006	295007	295008	295009
Sample Reference				BH03	WS11	WS14	WS05	HDP4
Sample Number				None Supplied				
Depth (m)				1.7	1.20-1.30	0.10-0.20	0.30-0.40	0.30-0.50
Date Sampled				24/10/2013	24/10/2013	24/10/2013	22/10/2013	23/10/2013
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
TPH (C10 - C25)	mg/kg	10	NONE	-	-	-	21	< 10

Lab Canada Namban				205005	205000	205007	205000	205000
Lab Sample Number				295005	295006	295007	295008	295009
Sample Reference Sample Number				BH03 None Supplied	WS11 None Supplied	WS14 None Supplied	WS05 None Supplied	HDP4 None Supplied
Depth (m)				1.7	1.20-1.30	0.10-0.20	0.30-0.40	0.30-0.50
Date Sampled				24/10/2013	24/10/2013	24/10/2013	22/10/2013	23/10/2013
Time Taken				None Supplied				
	1			None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
VOCs							4	
Chloromethane	µg/kg	4	ISO 17025	-	-	-	< 4.0	< 4.0
Chloroethane	µg/kg	2	ISO 17025	-	-	-	< 2.0	< 2.0
Bromomethane	µg/kg	6	ISO 17025	-	-	-	< 6.0	< 6.0
Vinyl Chloride	µg/kg	24	ISO 17025	-	-	-	< 24	< 24
Trichlorofluoromethane	µg/kg	5	ISO 17025	-	-	-	< 5.0	< 5.0
1,1-dichloroethene	µg/kg	7	MCERTS	-	-	-	< 7.0	< 7.0
1,1,2-Trichloro 1,2,2-Trifluoroethane	µg/kg	7	ISO 17025	-	-	-	< 7.0	< 7.0
Cis-1,2-dichloroethene	µg/kg	7	MCERTS	-	-	-	< 7.0	< 7.0
MTBE (Methyl Tertiary Butyl Ether) 1,1-dichloroethane	µg/kg µg/kg	1 6	MCERTS MCERTS	-	-	-	< 1.0	< 1.0
2,2-Dichloropropane	μg/kg μg/kg	6	NONE	-	-	-	< 6.0 < 6.0	< 6.0 < 6.0
Trichloromethane	µg/kg	7	MCERTS	-	-	-	< 7.0	< 7.0
1,1,1-Trichloroethane	µg/kg	7	MCERTS	-	-	-	< 7.0	< 7.0
1,2-dichloroethane	µg/kg	4	MCERTS	-	-	-	< 4.0	< 4.0
1,1-Dichloropropene	µg/kg	7	NONE	-	-	-	< 7.0	< 7.0
Trans-1,2-dichloroethene	µg/kg	7	NONE	-	-	-	< 7.0	< 7.0
Benzene	µg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
Tetrachloromethane	µg/kg	7	MCERTS	-	-	-	< 7.0	< 7.0
1,2-dichloropropane	µg/kg	6	MCERTS	-	-	-	< 6.0	< 6.0
Trichloroethene	µg/kg	6	MCERTS	-	-	-	< 6.0	< 6.0
Dibromomethane Bromodichloromethane	µg/kg µg/kg	7	MCERTS NONE	-	-	-	< 7.0 < 7.0	< 7.0 < 7.0
Cis-1,3-dichloropropene	µg/kg	7	ISO 17025	-	-	-	< 7.0	< 7.0
Trans-1,3-dichloropropene	µg/kg	8	ISO 17025	-	-	-	< 8.0	< 8.0
Toluene	µg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
1,1,2-Trichloroethane	µg/kg	5	MCERTS	-	-	-	< 5.0	< 5.0
1,3-Dichloropropane	µg/kg	8	ISO 17025	-	-	-	< 8.0	< 8.0
Dibromochloromethane	µg/kg	2	ISO 17025	-	-	-	< 2.0	< 2.0
Tetrachloroethene	µg/kg	8	MCERTS	-	-	-	< 8.0	< 8.0
1,2-Dibromoethane	µg/kg	3	ISO 17025	-	-	-	< 3.0	< 3.0
Chlorobenzene	µg/kg	7	MCERTS	-	-	-	< 7.0	< 7.0
1,1,1,2-Tetrachloroethane Ethylbenzene	µg/kg	4	MCERTS	-	-	-	< 4.0	< 4.0 < 1.0
p & m-xylene	µg/kg µg/kg	1	MCERTS MCERTS	-	-	-	< 1.0 < 1.0	< 1.0
Styrene	µg/kg µg/kg	5	MCERTS	-	-	-	< 5.0	< 5.0
Tribromomethane	µg/kg	7	MCERTS	-	-	-	< 7.0	< 7.0
o-xylene	µg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
1,1,2,2-Tetrachloroethane	µg/kg	5	MCERTS	-	-	-	< 5.0	< 5.0
Isopropylbenzene	µg/kg	7	NONE	-	-	-	< 7.0	< 7.0
Bromobenzene	µg/kg	11	MCERTS	-	-	-	< 11	< 11
N-Propylbenzene	µg/kg	5	ISO 17025	-	-	-	< 5.0	< 5.0
2-Chlorotoluene	µg/kg	11	NONE	-	-	-	< 11	< 11
4-Chlorotoluene 1,3,5-Trimethylbenzene	µg/kg	11	NONE	-	-	-	< 11	< 11
Tert-Butylbenzene	µg/kg µg/kg	4	ISO 17025 NONE	-	-	-	< 4.0 < 4.0	< 4.0 < 4.0
1,2,4-Trimethylbenzene	µg/kg µg/kg	5	ISO 17025	-	-	-	< 5.0	< 5.0
Sec-Butylbenzene	µg/kg	5	NONE	-	-	-	< 5.0	< 5.0
1,3-dichlorobenzene	µg/kg	7	ISO 17025	-	-	-	< 7.0	< 7.0
P-Isopropyltoluene	µg/kg	16	ISO 17025	-	-	-	< 16	< 16
1,2-dichlorobenzene	µg/kg	5	MCERTS	-	-	-	< 5.0	< 5.0
1,4-dichlorobenzene	µg/kg	8	MCERTS	-	-	-	< 8.0	< 8.0
Butylbenzene	µg/kg	4	NONE	-	-	-	< 4.0	< 4.0
1,2-Dibromo-3-chloropropane	µg/kg	7	ISO 17025	-	-	-	< 7.0	< 7.0
1,2,4-Trichlorobenzene	µg/kg	9	MCERTS	-	-	-	< 9.0	< 9.0
Hexachlorobutadiene	µg/kg	7	NONE	-	-	-	< 7.0	< 7.0
1,2,3-Trichlorobenzene	µg/kg	10	NONE	-	-	-	< 10	< 10

Lab Sample Number				295005	295006	295007	295008	295009
Sample Reference				BH03	WS11	WS14	WS05	HDP4
Sample Number			None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)				1.7	1.20-1.30	0.10-0.20	0.30-0.40	0.30-0.50
Date Sampled				24/10/2013	24/10/2013	24/10/2013	22/10/2013	23/10/2013
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					

SVOCs								
Aniline	mg/kg	0.1	NONE	-	-	-	< 0.1	< 0.1
Phenol	mg/kg	0.2	ISO 17025	-	-	-	< 0.2	< 0.2
2-Chlorophenol	mg/kg	0.1	MCERTS	-	-	-	< 0.1	< 0.1
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-	-	-	< 0.2	< 0.2
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	-	< 0.2	< 0.2
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	-	-	-	< 0.1	< 0.1
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	-	< 0.2	< 0.2
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	-	-	-	< 0.1	< 0.1
2-Methylphenol	mg/kg	0.3	MCERTS	-	-	-	< 0.3	< 0.3
Hexachloroethane	mg/kg	0.05	MCERTS	-	-	-	< 0.05	< 0.05
Nitrobenzene	mg/kg	0.3	MCERTS	-	-	-	< 0.3	< 0.3
4-Methylphenol	mg/kg	0.2	NONE	-	-	-	< 0.2	< 0.2
Isophorone	mg/kg	0.2	MCERTS	-	-	-	< 0.2	< 0.2
2-Nitrophenol	mg/kg	0.3	MCERTS	-	-	-	< 0.3	< 0.3
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	-	-	-	< 0.3	< 0.3
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	-	-	-	< 0.3	< 0.3
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	-	-	-	< 0.3	< 0.3
Naphthalene	mg/kg	0.1	ISO 17025	-	-	-	< 0.1	< 0.1
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	-	-	-	< 0.3	< 0.3
4-Chloroaniline	mg/kg	0.1	NONE	-	-	-	< 0.1	< 0.1
Hexachlorobutadiene	mg/kg	0.1	MCERTS	-	-	-	< 0.1	< 0.1
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	-	-	-	< 0.1	< 0.1
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	-	-	-	< 0.1	< 0.1
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	-	-	-	< 0.2	< 0.2
2-Methylnaphthalene	mg/kg	0.1	NONE	-	-	-	< 0.1	< 0.1
2-Chloronaphthalene	mg/kg	0.1	MCERTS	-	-	-	< 0.1	< 0.1
Dimethylphthalate	mg/kg	0.1	MCERTS	-	-	-	< 0.1	< 0.1
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	-	-	-	< 0.1	< 0.1
Acenaphthylene	mg/kg	0.2	ISO 17025	-	-	-	< 0.2	< 0.2
Acenaphthene	mg/kg	0.1	MCERTS	-	-	-	< 0.1	< 0.1
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	-	-	-	< 0.2	< 0.2
Dibenzofuran	mg/kg	0.2	MCERTS	-	-	-	< 0.2	< 0.2
4-Chlorophenyl phenyl ether	mg/kg	0.3	MCERTS	-	-	-	< 0.3	< 0.3
Diethyl phthalate	mg/kg	0.2	MCERTS	-	-	-	< 0.2	< 0.2
4-Nitroaniline	mg/kg	0.2	MCERTS	-	-	-	< 0.2	< 0.2
Fluorene	mg/kg	0.2	ISO 17025	-	-	-	< 0.2	< 0.2
Azobenzene	mg/kg	0.3	MCERTS	-	-	-	< 0.3	< 0.3
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	-	-	-	< 0.2	< 0.2
Hexachlorobenzene	mg/kg	0.3	MCERTS	-	-	-	< 0.3	< 0.3
Phenanthrene	mg/kg	0.2	ISO 17025	-	-	-	< 0.2	< 0.2
Anthracene	mg/kg	0.1	MCERTS			-	< 0.1	< 0.1
Carbazole	mg/kg	0.3	MCERTS	-	-	-	< 0.3	< 0.3
Dibutyl phthalate	mg/kg	0.2	MCERTS	-	-	-	< 0.2	< 0.2
Anthraquinone	mg/kg	0.3	MCERTS	-	-	-	< 0.3	< 0.3
Fluoranthene	mg/kg	0.2	MCERTS	-	-	-	0.5	< 0.2
Pyrene	mg/kg	0.2	ISO 17025	-	-	-	0.5	< 0.2
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	-	-	-	< 0.3	< 0.3
Benzo(a)anthracene	mg/kg	0.2	MCERTS	-	-	-	0.4	< 0.2
Chrysene	mg/kg	0.05	ISO 17025				0.3	< 0.1
Benzo(b)fluoranthene	mg/kg	0.1	ISO 17025	-	-	-	0.5	< 0.1
Benzo(k)fluoranthene	mg/kg	0.2	ISO 17025	-	-	-	0.3	< 0.2
Benzo(a)pyrene	mg/kg	0.1	MCERTS	-	-	-	0.3 < 0.2	< 0.1 < 0.2
Indeno(1,2,3-cd)pyrene	mg/kg	0.2	ISO 17025	-	-	-		
Dibenz(a,h)anthracene	mg/kg	0.2	ISO 17025	-	-	-	< 0.2	< 0.2 < 0.1
Benzo(ghi)perylene	mg/kg	0.05	ISO 17025	-	-	-	< 0.1	< 0.1

Lab Sample Number				295010	295011	295012	295013	295014
Sample Reference				WS08	WS11	WS07	WS06	WS02
Sample Number				None Supplied				
Depth (m)				0.10-0.20	0.10-0.30	0.10-0.20	0.25-0.35	0.20-0.40
Date Sampled				21/10/2013	24/10/2013	23/10/2013	23/10/2013	22/10/2013
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	21	3.2	19	15	6.6
Total mass of sample received	kg	0.001	NONE	0.47	0.45	0.49	0.47	0.51
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
Convert Transmission								
General Inorganics	pH Units	N/A	MCERTS	7.9	8.3	8.0	8.1	8.2
Electrical Conductivity	μS/cm	10	NONE	-	-	-	-	100
Total Cyanide	mg/kg	10	MCERTS	< 1	< 1	< 1	< 1	< 1
Complex Cyanide	mg/kg	1	NONE	-	-	-	-	< 1
Free Cyanide	mg/kg	1	NONE	-	-	-	-	< 1
Total Sulphate as SO ₄	mg/kg	100	ISO 17025	310	270	410	720	150
Water Soluble Sulphate (Soil Equivalent)	g/l	0.0025	MCERTS	0.0077	0.016	0.0087	0.015	0.016
Water Soluble Sulphate as SO ₄ (2:1)	mg/kg	2.5	MCERTS	7.7	16	8.7	15	16
Water Soluble Sulphate (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.0039	0.0078	0.0044	0.0074	0.0081
Sulphide	mg/kg	1	MCERTS	< 1.0	3.9	< 1.0	3.5	5.2
Water Soluble Chloride (2:1)	mg/kg	5	MCERTS	-	-	-	-	56
Ammonium as NH ₄	mg/kg	5	MCERTS	-	-	-	-	< 5.0
Fraction Organic Carbon (FOC)	N/A	0.00001	NONE	-	-	-	-	0.0016
Total Organic Carbon (TOC)	%	0.1	MCERTS	1.2	0.3	1.5	1.7	0.2
Total Phenols								
Total Phenols (monohydric)	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
		-			•		•	•
Speciated PAHs			-					
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Acenaphthene Fluorene	mg/kg	0.1	MCERTS MCERTS	< 0.10 < 0.20				
	mg/kg	0.2						
Phenanthrene Anthracene	mg/kg	0.2	MCERTS MCERTS	0.66	< 0.20 < 0.10	< 0.20	1.2 0.20	< 0.20 < 0.10
Fluoranthene	mg/kg mg/kg	0.1	MCERTS	1.3	< 0.20	0.42	2.7	< 0.10
Pyrene	mg/kg mg/kg	0.2	MCERTS	1.3	< 0.20	0.42	2.7	< 0.20
Benzo(a)anthracene	mg/kg	0.2	MCERTS	0.77	< 0.20	0.30	1.3	< 0.20
Chrysene	mg/kg	0.2	MCERTS	0.86	< 0.05	0.26	1.5	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	1.4	< 0.10	0.32	2.1	< 0.10
Benzo(k)fluoranthene	mg/kg	0.2	MCERTS	0.58	< 0.20	0.21	0.73	< 0.20
Benzo(a)pyrene	mg/kg	0.1	MCERTS	1.1	< 0.10	0.20	1.2	< 0.10
Indeno(1,2,3-cd)pyrene	mg/kg	0.2	MCERTS	0.44	< 0.20	< 0.20	0.45	< 0.20
Dibenz(a,h)anthracene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.50	< 0.05	< 0.05	0.55	< 0.05
Total PAH Speciated Total EPA-16 PAHs	ma/ka	1.6	MCERTS	8.8	< 1.6	2.2	14	< 1.6
Specialeu Toldi EPA-10 PARS	mg/kg	1.0	PILERIS	0.0	< 1.0	۷.۷	14	< 1.0

Project / Site name: Carfax , Winchester

Lab Sample Number				295010	295011	295012	295013	295014
Sample Reference				WS08	WS11	WS07	WS06	WS02
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.10-0.20	0.10-0.30	0.10-0.20	0.25-0.35	0.20-0.40
Date Sampled				21/10/2013	24/10/2013	23/10/2013	23/10/2013	22/10/2013
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids							8	
Antimony (aqua regia extractable)	mg/kg	1	ISO 17025	-	-	-	-	< 1.0
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	17	2.2	8.8	21	6.0
Barium (aqua regia extractable)	mg/kg	1	MCERTS	120	240	58	220	110
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.9	0.5	0.7	1.8	0.2
Boron (water soluble)	mg/kg	0.2	MCERTS	0.2	< 0.2	< 0.2	1.1	< 0.2
Cadmium (aqua regia extractable) Chromium (hexavalent)	mg/kg	0.2	MCERTS MCERTS	- 1.4	< 0.2	0.2	0.7	0.4
Chromium (aqua regia extractable)	mg/kg mg/kg	4	MCERTS	31	- 11	19	15	14
Cobalt (aqua regia extractable)	mg/kg	0.15	MCERTS	-	-	-	-	2.1
Copper (aqua regia extractable)	mg/kg	1	MCERTS	55	8.0	20	73	6.7
Iron (aqua regia extractable)	mg/kg	40	MCERTS	-	-	-	-	12000
Lead (aqua regia extractable)	mg/kg	2	MCERTS	140	13	54	760	24
Manganese (aqua regia extractable)	mg/kg	1	MCERTS	-	-	-	-	190
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	0.6	< 0.3	< 0.3	1.2	< 0.3
Molybdenum (aqua regia extractable) Nickel (aqua regia extractable)	mg/kg	0.25	MCERTS MCERTS	- 21	- 10	- 15	- 25	< 0.3 6.1
Nickei (aqua regia extractable) Phosphorus (aqua regia extractable)	mg/kg mg/kg	2	NONE	- 21	-	- 15	- 25	250
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tin (aqua regia extractable)	mg/kg	1	MCERTS	-	-	-	-	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	34	18	27	29	20
Zinc (aqua regia extractable)	mg/kg	2	MCERTS	180	56	67	280	75
	-				1		ī	
Calcium (aqua regia extractable)	mg/kg	20	NONE	-	-	-	-	79000
Magnesium (aqua regia extractable)	mg/kg	20 20	ISO 17025	-	-	-	-	6300 540
Potassium (aqua regia extractable) Sodium (aqua regia extractable)	mg/kg mg/kg	20	NONE	-	-	-	-	110
	ilig/itg	20	NONE					110
Monoaromatics								
Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene MTBE (Methyl Tertiary Butyl Ether)	µg/kg µg/kg	1	MCERTS MCERTS	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0	< 1.0 < 1.0	< 1.0
Petroleum Hydrocarbons Mineral Oil (C10 - C40)		10	NONE	-		-		< 10
	mg/kg	10	NUNE	-	-	-	1 -	< 10
TPH1 (C10 - C40)	mg/kg	10	MCERTS	13	< 10	< 10	18	28
TPH2 (C6 - C10)	mg/kg	0.1	NONE	-	-	-	-	< 0.1
TPH-CWG - Aliphatic >EC5 - EC6	men /lum	0.1	MCEDIC	< 0.1	< 0.1	~ 0.1	< 0.1	~ 0.1
TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8	mg/kg mg/kg	0.1	MCERTS MCERTS	< 0.1	< 0.1 < 0.1	< 0.1	< 0.1 < 0.1	< 0.1
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC7 - EC8	mg/kg mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
						4.0		25
TPH-CWG - Aromatic >EC21 - EC35 TPH-CWG - Aromatic (EC5 - EC35)	mg/kg mg/kg	10 10	MCERTS MCERTS	12 12	< 10 < 10	< 10	17 17	25 25

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Lab Sample Number				295010	295011	295012	295013	295014
Sample Reference	Sample Reference				WS11	WS07	WS06	WS02
Sample Number				None Supplied				
Depth (m)				0.10-0.20	0.10-0.30	0.10-0.20	0.25-0.35	0.20-0.40
Date Sampled				21/10/2013	24/10/2013	23/10/2013	23/10/2013	22/10/2013
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
TPH (C10 - C25)	mq/kq	10	NONE	-	-	-	-	< 10

I ab Sample Number		ab Sample Number					295013	295014
Sample Reference				295010 WS08	295011 WS11	295012 WS07	WS06	WS02
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.10-0.20	0.10-0.30	0.10-0.20	0.25-0.35	0.20-0.40
Date Sampled				21/10/2013	24/10/2013	23/10/2013	23/10/2013	22/10/2013
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
	5	of ion	ation Is					
VOCs								
Chloromethane	µg/kg	4	ISO 17025	-	-	-	-	< 4.0
Chloroethane	µg/kg	2	ISO 17025	-	-	-	-	< 2.0
Bromomethane	µg/kg	6	ISO 17025	-	-	-	-	< 6.0
Vinyl Chloride	µg/kg	24	ISO 17025	-	-	-	-	< 24
Trichlorofluoromethane 1,1-dichloroethene	μg/kg μg/kg	5	ISO 17025 MCERTS	-	-	-	-	< 5.0
1,1,2-Trichloro 1,2,2-Trifluoroethane		7	ISO 17025	-	-	-	-	< 7.0 < 7.0
Cis-1,2-dichloroethene	μg/kg μg/kg	7	MCERTS	-	-	-	-	< 7.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg µg/kg	1	MCERTS	-	-	-	-	< 1.0
1,1-dichloroethane	µg/kg	6	MCERTS	-	-	-	-	< 6.0
2,2-Dichloropropane	µg/kg	6	NONE	-	-	-	-	< 6.0
Trichloromethane	µg/kg	7	MCERTS	-	-	-	-	< 7.0
1,1,1-Trichloroethane	µg/kg	7	MCERTS	-	-	-	-	< 7.0
1,2-dichloroethane	µg/kg	4	MCERTS	-	-	-	-	< 4.0
1,1-Dichloropropene	µg/kg	7	NONE	-	-	-	-	< 7.0
Trans-1,2-dichloroethene	µg/kg	7	NONE	-	-	-	-	< 7.0
Benzene	µg/kg	1 7	MCERTS	-	-	-	-	< 1.0
Tetrachloromethane 1,2-dichloropropane	μg/kg μg/kg	6	MCERTS MCERTS	-	-	-	-	< 7.0 < 6.0
Trichloroethene	µg/kg µg/kg	6	MCERTS	-	-	-	-	< 6.0
Dibromomethane	µg/kg µg/kg	7	MCERTS	-	-	-	-	< 7.0
Bromodichloromethane	µg/kg	7	NONE	-	-	-	-	< 7.0
Cis-1,3-dichloropropene	µg/kg	7	ISO 17025	-	-	-	-	< 7.0
Trans-1,3-dichloropropene	µg/kg	8	ISO 17025	-	-	-	-	< 8.0
Toluene	µg/kg	1	MCERTS	-	-	-	-	< 1.0
1,1,2-Trichloroethane	µg/kg	5	MCERTS	-	-	-	-	< 5.0
1,3-Dichloropropane	µg/kg	8	ISO 17025	-	-	-	-	< 8.0
Dibromochloromethane	µg/kg	2	ISO 17025	-	-	-	-	< 2.0
Tetrachloroethene 1,2-Dibromoethane	µg/kg	8	MCERTS ISO 17025	-	-	-	-	< 8.0 < 3.0
Chlorobenzene	μg/kg μg/kg	7	MCERTS	-	-	-	-	< 7.0
1,1,1,2-Tetrachloroethane	µg/kg	4	MCERTS	-	-	-	-	< 4.0
Ethylbenzene	µg/kg	1	MCERTS	-	-	-	-	< 1.0
p & m-xylene	µg/kg	1	MCERTS	-	-	-	-	< 1.0
Styrene	µg/kg	5	MCERTS	-	-	-	-	< 5.0
Tribromomethane	µg/kg	7	MCERTS	-	-	-	-	< 7.0
o-xylene	µg/kg	1	MCERTS	-	-	-	-	< 1.0
1,1,2,2-Tetrachloroethane	µg/kg	5	MCERTS	-	-	-	-	< 5.0
Isopropylbenzene	µg/kg	7	NONE	-	-	-	-	< 7.0
Bromobenzene	µg/kg	11 5	MCERTS	-	-	-	-	< 11 < 5.0
N-Propylbenzene 2-Chlorotoluene	μg/kg μg/kg	5	ISO 17025 NONE	-	-	-	-	< 5.0
4-Chlorotoluene	μg/kg μg/kg	11	NONE		-	-	-	< 11
1,3,5-Trimethylbenzene	µg/kg µg/kg	4	ISO 17025	-	-	-	-	< 4.0
Tert-Butylbenzene	µg/kg	4	NONE	-	-	-	-	< 4.0
1,2,4-Trimethylbenzene	µg/kg	5	ISO 17025	-	-	-	-	< 5.0
Sec-Butylbenzene	µg/kg	5	NONE	-	-	-	-	< 5.0
1,3-dichlorobenzene	µg/kg	7	ISO 17025	-	-	-	-	< 7.0
P-Isopropyltoluene	µg/kg	16	ISO 17025	-	-	-	-	< 16
1,2-dichlorobenzene	µg/kg	5	MCERTS	-	-	-	-	< 5.0
1,4-dichlorobenzene	µg/kg	8	MCERTS	-	-	-	-	< 8.0
Butylbenzene	µg/kg	4	NONE ISO 17025	-	-	-	-	< 4.0
1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene	µg/kg	9	MCERTS	-	-	-	-	< 7.0 < 9.0
Hexachlorobutadiene	μg/kg μg/kg	9 7	NONE	-	-	-	-	< 7.0
		/	INUNE	-	-	-	-	~ 7.0

Lab Canada Number				205010	205011	205012	205012	205014
Lab Sample Number				295010	295011	295012	295013	295014
Sample Reference Sample Number				WS08 None Supplied	WS11 None Supplied	WS07 None Supplied	WS06 None Supplied	WS02 None Supplied
Depth (m)				0.10-0.20	0.10-0.30	0.10-0.20	0.25-0.35	0.20-0.40
Date Sampled				21/10/2013	24/10/2013	23/10/2013	23/10/2013	22/10/2013
Time Taken				None Supplied				
	I			None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
SVOCs								
Aniline	mg/kg	0.1	NONE	-	-	-	-	< 0.1
Phenol	mg/kg	0.2	ISO 17025	-	-	-	-	< 0.2
2-Chlorophenol	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
2-Methylphenol	mg/kg	0.3	MCERTS	-	-	-	-	< 0.3
Hexachloroethane	mg/kg	0.05	MCERTS	-	-	-	-	< 0.05
Nitrobenzene	mg/kg	0.3	MCERTS	-	-	-	-	< 0.3
4-Methylphenol	mg/kg	0.2	NONE	-	-	-	-	< 0.2
Isophorone 2-Nitrophenol	mg/kg mg/kg	0.2	MCERTS MCERTS	-	-	-	-	< 0.2
2,4-Dimethylphenol	mg/kg mg/kg	0.3	MCERTS	-	-	-	-	< 0.3
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	-	-	-	-	< 0.3
1.2.4-Trichlorobenzene	mg/kg	0.3	MCERTS	-	-	-	-	< 0.3
Naphthalene	mg/kg	0.1	ISO 17025	-	-	-	-	< 0.1
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	-	-	-	-	< 0.3
4-Chloroaniline	mg/kg	0.1	NONE	-	-	-	-	< 0.1
Hexachlorobutadiene	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	-	-	-	-	< 0.1
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
2-Methylnaphthalene	mg/kg	0.1	NONE	-	-	-	-	< 0.1
2-Chloronaphthalene	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
Dimethylphthalate	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
Acenaphthylene	mg/kg	0.2	ISO 17025	-	-	-	-	< 0.2
Acenaphthene 2,4-Dinitrotoluene	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
Z,4-Dinitrotoluene Dibenzofuran	mg/kg mg/kg	0.2	MCERTS MCERTS	-	-	-	-	< 0.2
4-Chlorophenyl phenyl ether	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
Diethyl phthalate	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
4-Nitroaniline	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
Fluorene	mg/kg	0.2	ISO 17025	-	-	-	-	< 0.2
Azobenzene	mg/kg	0.3	MCERTS	-	-	-	-	< 0.3
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
Hexachlorobenzene	mg/kg	0.3	MCERTS	-	-	-	-	< 0.3
Phenanthrene	mg/kg	0.2	ISO 17025	-	-	-	-	< 0.2
Anthracene	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
Carbazole	mg/kg	0.3	MCERTS	-	-	-	-	< 0.3
Dibutyl phthalate	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
Anthraquinone	mg/kg	0.3	MCERTS	-	-	-	-	< 0.3
Fluoranthene	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
Pyrene Butyl benzyl phthalate	mg/kg	0.2	ISO 17025	-	-	-	-	< 0.2
Benzo(a)anthracene	mg/kg mg/kg	0.3	ISO 17025 MCERTS	-	-	-	-	< 0.3
Chrysene	mg/kg mg/kg	0.2	ISO 17025	-	-	-	-	< 0.2
Benzo(b)fluoranthene	mg/kg mg/kg	0.05	ISO 17025 ISO 17025	-	-	-	-	< 0.1
Benzo(k)fluoranthene	mg/kg	0.1	ISO 17025	-	-	-	-	< 0.2
Benzo(a)pyrene	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	ISO 17025	-	-	-	-	< 0.2
Dibenz(a,h)anthracene	mg/kg	0.2	ISO 17025	-	-	-	-	< 0.2

ab Sample Number				295015	295016	295017	
ample Reference	-			WS04	WS03	WS01	
ample Number				None Supplied	None Supplied	None Supplied	
Depth (m)				0.50-0.60	0.30-0.40	0.30-0.60	
Date Sampled				22/10/2013	22/10/2013	22/10/2013	
ime Taken				None Supplied	None Supplied	None Supplied	
			Ac				
Analytical Parameter	ç	Limit of detection	St Ce				
Soil Analysis)	Units	at it	dita				
		on of	Accreditation Status				
tone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	
loisture Content	%	N/A	NONE	12	6.9	6.6	
otal mass of sample received	kg	0.001	NONE	0.45	0.49	0.44	
sbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	
General Inorganics	-				Ĩ		
H	pH Units	N/A	MCERTS	8.1	8.2	8.9	
lectrical Conductivity	μS/cm	10	NONE	140	120	220	
otal Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	
Complex Cyanide	mg/kg	1	NONE	< 1	< 1	< 1	
ree Cyanide otal Sulphate as SO₄	mg/kg	1 100	NONE	< 1 380	< 1 430	< 1 1700	
	mg/kg		ISO 17025				
Vater Soluble Sulphate (Soil Equivalent) Vater Soluble Sulphate as SO ₄ (2:1)	g/l mg/kg	0.0025	MCERTS MCERTS	0.027	0.046 46	0.18 180	
		0.00125		0.014	0.023	0.091	
Vater Soluble Sulphate (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	12	4.6	7.4	
Vater Soluble Chloride (2:1)	mg/kg mg/kg	5	MCERTS MCERTS	12	270	7.4 44	
mmonium as NH ₄	mg/kg	5	MCERTS	< 5.0	< 5.0	< 5.0	
raction Organic Carbon (FOC)	N/A	0.00001	NONE	0.0081	0.0007	0.0027	
Total Organic Carbon (TOC)	%	0.00001	MCERTS	0.0081	< 0.1	0.3	
	70	0.1	HEEKIS	0.0	V 0.1	0.5	
otal Phenols							
otal Phenols (monohydric)	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	
and the second manual							
peciated PAHs laphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	
cenaphthylene	mg/kg	0.03	MCERTS	< 0.20	< 0.20	< 0.20	
cenaphthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	
luorene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	
henanthrene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	
Inthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	
luoranthene	mg/kg	0.2	MCERTS	0.55	< 0.20	0.53	Î
yrene	mg/kg	0.2	MCERTS	0.51	< 0.20	0.50	Î
enzo(a)anthracene	mg/kg	0.2	MCERTS	0.32	< 0.20	0.51	Î
hrysene	mg/kg	0.05	MCERTS	0.33	< 0.05	0.42	
enzo(b)fluoranthene	mg/kg	0.1	MCERTS	0.44	< 0.10	0.74	
enzo(k)fluoranthene	mg/kg	0.2	MCERTS	0.21	< 0.20	0.29	
enzo(a)pyrene	mg/kg	0.1	MCERTS	0.25	< 0.10	0.46	
ndeno(1,2,3-cd)pyrene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	
Dibenz(a,h)anthracene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	
enzo(ghi)perylene	mq/kq	0.05	MCERTS	< 0.05	< 0.05	< 0.05	

Project / Site name: Carfax , Winchester

Lah Samula Number	b Sample Number						i
Lab Sample Number Sample Reference				295015 WS04	295016 WS03	295017 WS01	
Sample Number				None Supplied	None Supplied	None Supplied	
Depth (m)				0.50-0.60	0.30-0.40	0.30-0.60	
Date Sampled				22/10/2013	22/10/2013	22/10/2013	
Time Taken				None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Heavy Metals / Metalloids							
Antimony (aqua regia extractable)	mg/kg	1	ISO 17025	1.1	< 1.0	1.1	
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	11	7.0	7.4	
Barium (aqua regia extractable)	mg/kg	1	MCERTS	120	110	110	
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.4	0.2	0.2	
Boron (water soluble)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	0.7	
Cadmium (aqua regia extractable) Chromium (hexavalent)	mg/kg	0.2 4	MCERTS MCERTS	0.5 < 4.0	0.4 < 4.0	1.2 < 4.0	
Chromium (aqua regia extractable)	mg/kg mg/kg	4	MCERTS	13	11	11	
Cobalt (aqua regia extractable)	mg/kg	0.15	MCERTS	4.1	2.4	2.4	
Copper (aqua regia extractable)	mg/kg	1	MCERTS	11	9.6	8.7	
Iron (aqua regia extractable)	mg/kg	40	MCERTS	13000	7100	6700	
Lead (aqua regia extractable)	mg/kg	2	MCERTS	50	37	65	
Manganese (aqua regia extractable)	mg/kg	1	MCERTS	330	240	210	
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	
Molybdenum (aqua regia extractable) Nickel (aqua regia extractable)	mg/kg mg/kg	0.25 2	MCERTS MCERTS	0.3 9.8	0.3 7.0	0.3 6.3	
Phosphorus (aqua regia extractable)	mg/kg	20	NONE	470	400	260	
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
Tin (aqua regia extractable)	mg/kg	1	MCERTS	1.1	1.3	3.6	
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	19	12	14	
Zinc (aqua regia extractable)	mg/kg	2	MCERTS	110	79	190	
Calcium (aqua regia extractable)	mg/kg	20	NONE	200000	190000	200000	
Magnesium (aqua regia extractable) Potassium (aqua regia extractable)	mg/kg mg/kg	20 20	ISO 17025 NONE	3000 910	4800 550	4200 570	
Sodium (aqua regia extractable)	mg/kg	20	NONE	160	170	200	
Monoaromatics							
Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
p & m-xylene o-xylene	µg/kg µg/kg	1	MCERTS MCERTS	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	
MTBE (Methyl Tertiary Butyl Ether)	μg/kg μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
Petroleum Hydrocarbons Mineral Oil (C10 - C40)	mg/kg	10	NONE	52	< 10	17	
	mg/kg	10	NUNE	JL	~ 10	1/	
TPH1 (C10 - C40)	mg/kg	10	MCERTS	280	< 10	23	
TPH2 (C6 - C10)	mg/kg	0.1	NONE	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21	mg/kg mg/kg	2	MCERTS MCERTS	< 2.0 < 8.0	< 2.0 < 8.0	< 2.0 < 8.0	
TPH-CWG - Aliphatic >EC21 - EC21	mg/kg	8	MCERTS	52	< 8.0	17	
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	52	< 10	17	
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	
TPH-CWG - Aromatic >EC21 - EC35 TPH-CWG - Aromatic (EC5 - EC35)	mg/kg mg/kg	10 10	MCERTS MCERTS	180 180	< 10 < 10	< 10 < 10	
	тту/ку	10	PICERTS	100	~ 10	~ 10	

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Lab Sample Number				295015	295016	295017	
Sample Reference				WS04	WS03	WS01	
Sample Number				None Supplied	None Supplied	None Supplied	
Depth (m)				0.50-0.60	0.30-0.40	0.30-0.60	
Date Sampled				22/10/2013	22/10/2013	22/10/2013	
Time Taken				None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
TPH (C10 - C25)	mq/kq	10	NONE	18	< 10	< 10	

Lab Camula Number	b Sample Number						
Lab Sample Number Sample Reference				295015 WS04	295016 WS03	295017 WS01	
Sample Number				None Supplied	None Supplied	None Supplied	
Depth (m)				0.50-0.60	0.30-0.40	0.30-0.60	
Date Sampled				22/10/2013	22/10/2013	22/10/2013	
Time Taken				None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
			on				
VOCs							
Chloromethane	µg/kg	4	ISO 17025	< 4.0	< 4.0	< 4.0	
Chloroethane	µg/kg	2	ISO 17025	< 2.0	< 2.0	< 2.0	
Bromomethane	µg/kg	6	ISO 17025	< 6.0 < 24	< 6.0	< 6.0	
Vinyl Chloride Trichlorofluoromethane	μg/kg μg/kg	24 5	ISO 17025 ISO 17025	< 5.0	< 24 < 5.0	< 24 < 5.0	
1,1-dichloroethene	µg/kg µg/kg	7	MCERTS	< 7.0	< 7.0	< 7.0	
1,1,2-Trichloro 1,2,2-Trifluoroethane	µg/kg	7	ISO 17025	< 7.0	< 7.0	< 7.0	
Cis-1,2-dichloroethene	µg/kg	7	MCERTS	< 7.0	< 7.0	< 7.0	
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
1,1-dichloroethane	µg/kg	6	MCERTS	< 6.0	< 6.0	< 6.0	
2,2-Dichloropropane	µg/kg	6	NONE	< 6.0	< 6.0	< 6.0	
Trichloromethane 1,1,1-Trichloroethane	µg/kg	7	MCERTS MCERTS	< 7.0 < 7.0	< 7.0	< 7.0	
1,1,1-i richloroethane	μg/kg μg/kg	4	MCERTS	< 4.0	< 7.0 < 4.0	< 7.0 < 4.0	
1.1-Dichloropropene	µg/kg	7	NONE	< 7.0	< 7.0	< 7.0	
Trans-1,2-dichloroethene	µg/kg	7	NONE	< 7.0	< 7.0	< 7.0	
Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
Tetrachloromethane	µg/kg	7	MCERTS	< 7.0	< 7.0	< 7.0	
1,2-dichloropropane	µg/kg	6	MCERTS	< 6.0	< 6.0	< 6.0	
Trichloroethene	µg/kg	6	MCERTS	< 6.0	< 6.0	< 6.0	
Dibromomethane	µg/kg	7	MCERTS NONE	< 7.0	< 7.0	< 7.0	
Bromodichloromethane Cis-1,3-dichloropropene	µg/kg µg/kg	7	ISO 17025	< 7.0 < 7.0	< 7.0 < 7.0	< 7.0 < 7.0	
Trans-1,3-dichloropropene	µg/kg µg/kg	8	ISO 17025	< 8.0	< 8.0	< 8.0	
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
1,1,2-Trichloroethane	µg/kg	5	MCERTS	< 5.0	< 5.0	< 5.0	
1,3-Dichloropropane	µg/kg	8	ISO 17025	< 8.0	< 8.0	< 8.0	
Dibromochloromethane	µg/kg	2	ISO 17025	< 2.0	< 2.0	< 2.0	
Tetrachloroethene	µg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	
1,2-Dibromoethane Chlorobenzene	μg/kg μg/kg	3	ISO 17025 MCERTS	< 3.0 < 7.0	< 3.0 < 7.0	< 3.0 < 7.0	
1,1,1,2-Tetrachloroethane	µg/kg µg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
Styrene	µg/kg	5	MCERTS	< 5.0	< 5.0	< 5.0	
Tribromomethane	µg/kg	7	MCERTS	< 7.0	< 7.0	< 7.0	
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
1,1,2,2-Tetrachloroethane	µg/kg	5	MCERTS	< 5.0	< 5.0	< 5.0	
Isopropylbenzene Bromobenzene	μg/kg μg/kg	7	NONE MCERTS	< 7.0 < 11	< 7.0 < 11	< 7.0 < 11	
N-Propylbenzene	μg/kg μg/kg	5	ISO 17025	< 5.0	< 5.0	< 5.0	
2-Chlorotoluene	µg/kg µg/kg	11	NONE	< 11	< 11	< 11	
4-Chlorotoluene	µg/kg	11	NONE	< 11	< 11	< 11	
1,3,5-Trimethylbenzene	µg/kg	4	ISO 17025	< 4.0	< 4.0	< 4.0	
Tert-Butylbenzene	µg/kg	4	NONE	< 4.0	< 4.0	< 4.0	
1,2,4-Trimethylbenzene	µg/kg	5	ISO 17025	< 5.0	< 5.0	< 5.0	
Sec-Butylbenzene	µg/kg	5	NONE	< 5.0	< 5.0	< 5.0	
1,3-dichlorobenzene P-Isopropyltoluene	µg/kg	7	ISO 17025 ISO 17025	< 7.0 < 16	< 7.0 < 16	< 7.0 < 16	
1,2-dichlorobenzene	μg/kg μg/kg	5	MCERTS	< 5.0	< 5.0	< 5.0	
1,4-dichlorobenzene	µg/kg µg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	
Butylbenzene	µg/kg	4	NONE	< 4.0	< 4.0	< 4.0	
1,2-Dibromo-3-chloropropane	µg/kg	7	ISO 17025	< 7.0	< 7.0	< 7.0	
1,2,4-Trichlorobenzene	µg/kg	9	MCERTS	< 9.0	< 9.0	< 9.0	
Hexachlorobutadiene	µg/kg	7	NONE	< 7.0	< 7.0	< 7.0	
1,2,3-Trichlorobenzene	µg/kg	10	NONE	< 10	< 10	< 10	

Lab Sample Number				295015	295016	295017		
Sample Reference				WS04	WS03	WS01		
Sample Number				None Supplied	None Supplied 0.30-0.40	None Supplied 0.30-0.60		
Depth (m)				0.50-0.60 22/10/2013	22/10/2013	22/10/2013		
Date Sampled Time Taken				None Supplied	None Supplied	None Supplied		
				None Supplied	None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
SVOCs								
Aniline	mg/kg	0.1	NONE	< 0.1	< 0.1	< 0.1		
Phenol	mg/kg	0.1	ISO 17025	< 0.1	< 0.1	< 0.1		
2-Chlorophenol	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1		
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2		
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2		
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1		
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2		
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1		
2-Methylphenol	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3		
Hexachloroethane	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05		
Nitrobenzene 4-Methylphenol	mg/kg mg/kg	0.3	MCERTS NONE	< 0.3 < 0.2	< 0.3 < 0.2	< 0.3		
Isophorone	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2		
2-Nitrophenol	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2		
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3		
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3		
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3		
Naphthalene	mg/kg	0.1	ISO 17025	< 0.1	< 0.1	< 0.1		
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3		
4-Chloroaniline	mg/kg	0.1	NONE	< 0.1	< 0.1	< 0.1		
Hexachlorobutadiene 4-Chloro-3-methylphenol	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1		
2,4,6-Trichlorophenol	mg/kg mg/kg	0.1	NONE MCERTS	< 0.1	< 0.1	< 0.1		
2,4,5-Trichlorophenol	mg/kg	0.1	MCERTS	< 0.2	< 0.2	< 0.2		
2-Methylnaphthalene	mg/kg	0.1	NONE	< 0.1	< 0.1	< 0.1		
2-Chloronaphthalene	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1		
Dimethylphthalate	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1		
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1		
Acenaphthylene	mg/kg	0.2	ISO 17025	< 0.2	< 0.2	< 0.2		
Acenaphthene	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1		
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2		
Dibenzofuran 4-Chlorophenyl phenyl ether	mg/kg	0.2	MCERTS MCERTS	< 0.2 < 0.3	< 0.2	< 0.2		
Diethyl phthalate	mg/kg mg/kg	0.3	MCERTS	< 0.2	< 0.2	< 0.2		
4-Nitroaniline	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2		
Fluorene	mg/kg	0.2	ISO 17025	< 0.2	< 0.2	< 0.2		
Azobenzene	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3		
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2		
Hexachlorobenzene	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3		
Phenanthrene	mg/kg	0.2	ISO 17025	< 0.2	< 0.2	< 0.2		
Anthracene	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1		
Carbazole	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	l	
Dibutyl phthalate Anthraquinone	mg/kg mg/kg	0.2	MCERTS MCERTS	< 0.2 < 0.3	< 0.2 < 0.3	< 0.2		
Fluoranthene	mg/kg mg/kg	0.3	MCERTS	< 0.3 0.6	< 0.2	< 0.3 0.5	<u> </u>	
Pyrene	mg/kg	0.2	ISO 17025	0.5	< 0.2	0.5		
Butyl benzyl phthalate	mg/kg	0.2	ISO 17025	< 0.3	< 0.3	< 0.3		
Benzo(a)anthracene	mg/kg	0.2	MCERTS	0.3	< 0.2	0.5		
Chrysene	mg/kg	0.05	ISO 17025	0.3	< 0.1	0.4		
Benzo(b)fluoranthene	mg/kg	0.1	ISO 17025	0.4	< 0.1	0.7		
Benzo(k)fluoranthene	mg/kg	0.2	ISO 17025	0.2	< 0.2	0.3		
Benzo(a)pyrene	mg/kg	0.1	MCERTS	0.3	< 0.1	0.5		
Indeno(1,2,3-cd)pyrene	mg/kg	0.2	ISO 17025	< 0.2	< 0.2	< 0.2		
Dibenz(a,h)anthracene Benzo(ghi)perylene	mg/kg	0.2	ISO 17025 ISO 17025	< 0.2	< 0.2	< 0.2		
Denzo(gril)perylene	mg/kg	0.05	150 17025	< 0.1	< 0.1	< 0.1		

Lab Sample Number				295018	295019	295020	295021	
Sample Reference				295018 WS08	295019 WS04	295020 WS03	295021 WS01	
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)				0.10-0.20	0.50-0.60	0.30-0.40	0.30-0.60	
Date Sampled				21/10/2013	22/10/2013	22/10/2013	22/10/2013	
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	
				None Supplieu	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Leachate Analysis)	Units	Limit of detection	Accreditation Status					
		f	tion					
General Inorganics								
pH	pH Units	N/A	ISO 17025	8.2	8.1	8.2	9.8	
Total Cyanide	µg/l	10	ISO 17025	< 10	< 10	< 10	< 10	
Sulphate as SO ₄	µg/l	100	ISO 17025	904	2760	5110	8850	
Elemental Sulphur	mg/l	20	NONE	< 20	< 20	< 20	< 20	
Sulphide	µg/l	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	
Total Phenols								
Total Phenols (monohydric)	µg/l	10	ISO 17025	< 10	< 10	< 10	< 10	
Speciated PAHs								
Naphthalene	µq/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	
Acenaphthylene	µg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	
Acenaphthene	µg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	
Fluorene	µg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	
Phenanthrene	µg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	
Anthracene	µg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	
Fluoranthene	µg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	
Pyrene	µg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	
Benzo(a)anthracene	µg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	
Chrysene	µg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	
Benzo(b)fluoranthene	µg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	
Benzo(k)fluoranthene	µg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	
Benzo(a)pyrene	µg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	
Indeno(1,2,3-cd)pyrene	µg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	
Dibenz(a,h)anthracene	µg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	
Benzo(ghi)perylene	µg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	
Total PAH								
Total EPA-16 PAHs	µg/l	0.2	NONE	< 0.2	< 0.2	< 0.2	< 0.2	
Heavy Metals / Metalloids								
Arsenic (dissolved)	µg/l	1.1	ISO 17025	13	3.7	4.3	4.7	
Barium (dissolved)	μg/l	0.05	ISO 17025	12	44	29	63	
Beryllium (dissolved)	µg/l	0.2	ISO 17025	< 0.2	< 0.2	< 0.2	< 0.2	
Boron (dissolved)	µg/l	10	ISO 17025	< 10	< 10	25	27	
Cadmium (dissolved)	µg/l	0.08	ISO 17025	< 0.08	< 0.08	< 0.08	< 0.08	
Chromium (dissolved)	µg/l	0.4	ISO 17025	1.4	0.5	0.8	4.4	
Copper (dissolved)	µg/l	0.7	ISO 17025	13	9.8	2.6	5.3	
Lead (dissolved)	µg/l	1	ISO 17025	4.3	2.7	4.4	4.5	
Mercury (dissolved)	µg/l	0.5	ISO 17025	< 0.5	< 0.5	< 0.5	< 0.5	
Nickel (dissolved)	µg/l	0.3	ISO 17025	1.9	< 0.3	< 0.3	0.5	
Selenium (dissolved)	µg/l	4	ISO 17025	< 4.0	< 4.0	< 4.0	< 4.0	
Vanadium (dissolved)	µg/l	1.7	ISO 17025	7.2	< 1.7	8.8	19	
Zinc (dissolved)	µg/l	0.4	ISO 17025	6.0	4.9	5.6	12	

Project / Site name: Carfax , Winchester

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and topsoil/loam soil types. Data for unaccredited types of solid should be interpreted with care.

of a sample is calculated as the % weight of the stones not passing a 2 mm sieve. Results are not corrected for stone content.

Stone content

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
295005	BH03	None Supplied	1.7	White chalk with gravel and brick. **
295006	WS11	None Supplied	1.20-1.30	Light brown clay and sand with chalk.
295007	WS14	None Supplied	0.10-0.20	Grey sandy topsoil with gravel and chalk.
295008	WS05	None Supplied	0.30-0.40	Light brown gravelly sand with brick.
295009	HDP4	None Supplied	0.30-0.50	Light brown gravelly sand with rubble.
295010	WS08	None Supplied	0.10-0.20	Brown topsoil and clay with vegetation.
295011	WS11	None Supplied	0.10-0.30	Light brown gravelly sand with rubble.
295012	WS07	None Supplied	0.10-0.20	Brown topsoil and clay with vegetation.
295013	WS06	None Supplied	0.25-0.35	Brown topsoil and clay with gravel and vegetation.
295014	WS02	None Supplied	0.20-0.40	Light brown gravelly sand.
295015	WS04	None Supplied	0.50-0.60	Brown clay and sand with gravel and chalk.
295016	WS03	None Supplied	0.30-0.40	Light brown clay and sand with rubble and chalk.
295017	WS01	None Supplied	0.30-0.60	Light brown sand with rubble and brick.

** Non Mcerts Matrix

Project / Site name: Carfax , Winchester

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Ammonium as NH4 in soil	Determination of ammonium in soil by extraction with potassium chloride followed by addition of buffer solution followed by ion selective electrode.	In-house method	L035-PL	W	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron in leachate	Determination of boron by acidification followed by ICP-OES.	In-house method based on MEWAM	L039-PL	W	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BTEX and MTBE in soil	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073S-PL	w	MCERTS
Cations in soil by ICP-OES	Determination of cations in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	NONE
Chloride, water soluble, in soil	Determination of chloride by titration using silver nitrate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L075-PL	D	MCERTS
Complex cyanide in soil	Determination of complex cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	NONE
DRO C10-28 (Soil)		In-house method	L064-PL		NONE
Electrical conductivity of soil	Determination of electrical conductivity in soil by addition of saturated calcium sulphate followed by electrometric measurement.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L031-PL	w	NONE
Elemental sulphur in leachate	Determination of elemental sulphur in leachate by extraction in dichloromethane followed by HPLC.	In-house method based on Secondsite Property Holdings Guidance for Assessing and Managing Potential	L021-UK	W	NONE
Fraction of Organic Carbon in soil	Determination of fraction of organic carbon in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L023-PL	D	NONE
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	NONE
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	D	MCERTS
Metals by ICP-OES in leachate	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

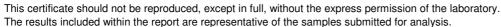
Project / Site name: Carfax , Winchester

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Monohydric phenols in leachate	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	w	ISO 17025
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	w	MCERTS
pH in leachate	Determination of pH in leachate by electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	W	ISO 17025
pH in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	w	MCERTS
Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds in soil by extraction in dichloromethane and hexane followed by GC-MS.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Speciated EPA-16 PAHs in leachate	Determination of PAH compounds in leachate by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-UK		NONE
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Stones not passing through a 10 mm sieve is determined gravimetrically and reported as a percentage of the dry weight. Sample	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate in leachates	Determination of sulphate in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	w	ISO 17025
Sulphate, water soluble, in soil	Determination of water soluble sulphate by extraction with water followed by ICP-OES. Results reported corrected for extraction ratio (soil equivalent) as g/l and mg/kg; and upon the 2:1	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	MCERTS
Sulphide in leachate	Determination of sulphide in leachate by ion selective electrode.	In-house method	L010-PL	w	NONE
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Total cyanide in leachate	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	ISO 17025
Total organic carbon in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L023-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	ISO 17025
TPH1 (Soil)	Determination of dichloromethane/hexane extractable hydrocarbons in soil by GC-MS.	In-house method	L064-PL	D	MCERTS
TPH2 (Soil)	Determination of hydrocarbons C6-C10 by headspace GC-MS.	In-house method based on USEPA8260	L073S	W	NONE

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Project / Site name: Carfax , Winchester


Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
TPHCWG (Soil)	Determination of pentane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method	L076-PL	W	MCERTS
Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS.	In-house method based on USEPA8260	L073S-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

7 soil samples

Signed:

Dr Claire Stone Quality Manager For & on behalf of i2 Analytical Ltd.

Other office located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

Carfax, Winchester

1308015.001

1

Excel copies of reports are only valid when accompanied by this PDF certificate.

Samples received on: 31/10/2013 Samples instructed on: 31/10/2013 Analysis completed by: 13/11/2013 **Report issued on:** 13/11/2013

Analytical Report Number : 13-47668

Claire Hooley Tweedie Evans Consulting Ltd The Old Chapel 35a Southover Wells

Somerset BA5 1UH

t: 01749 677 760 f: 01749 679 345

e: claire.hooley@tecon.co.uk

Project / Site name:

Your job number:

Your order number:

Report Issue Number:

Samples Analysed:

i2 Analytical Ltd.

Croxley Green

Business Park, Watford,

t: 01923 225404

f: 01923 237404

Herts, WD18 8YS

7 Woodshots Meadow,

e: reception@i2analytical.com

Environmental Science

Rexona Rahman Customer Services Manager For & on behalf of i2 Analytical Ltd.

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Lab Sample Number				295326	295327	295328	295329	295330
Sample Reference				BH01	BH01	BH02	BH02	BH02
Sample Number				None Supplied				
Depth (m)				4.00-4.10	10.00-10.20	3.00-3.10	9.50-10.00	16.75-17.00
Date Sampled				21/10/2013	21/10/2013	23/10/2013	23/10/2013	23/10/2013
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	21	19	19	19	20
Total mass of sample received	kg	0.001	NONE	0.49	0.57	0.52	0.49	0.63
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	-	Not-detected	-	-
General Inorganics								
рН	pH Units	N/A	MCERTS	7.9	-	8.2	-	-
Total Cyanide	mg/kg	1	MCERTS	< 1	-	< 1	-	-
Total Sulphate as SO ₄	mg/kg	100	ISO 17025	320	-	450	-	-
Water Soluble Sulphate (Soil Equivalent)	g/l	0.0025	MCERTS	0.13	-	0.0077	-	-
Water Soluble Sulphate as SO ₄ (2:1)	mg/kg	2.5	MCERTS	130	-	7.7	-	-
Water Soluble Sulphate (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.067	-	0.0039	-	-
Sulphide	mg/kg	1	MCERTS	1.4	-	< 1.0	-	-
Total Organic Carbon (TOC)	%	0.1	MCERTS	< 0.1	-	0.2	-	-
Total Phenols								
		2	MOEDTO	. 2.0	-	. 2.0	-	
Total Phenols (monohydric)	mg/kg	Z	MCERTS	< 2.0	-	< 2.0	-	-
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.03	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Acenaphthene	mg/kg	0.2	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Phenanthrene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Pyrene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Benzo(a)anthracene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(k)fluoranthene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Benzo(a)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-cd)pyrene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Dibenz(a,h)anthracene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH		1.0						
Speciated Total EPA-16 PAHs	mg/kg	1.6	MCERTS	< 1.6	< 1.6	< 1.6	< 1.6	< 1.6
Henry Matele / Metelle?-								
Heavy Metals / Metalloids Arsenic (agua regia extractable)	mallia	1	MCEDIC	~ 1.0	-	< 1.0		-
Arsenic (aqua regia extractable) Barium (aqua regia extractable)	mg/kg mg/kg	1	MCERTS MCERTS	< 1.0 9.1	-	< 1.0 8.9	-	-
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	< 0.1	-	< 0.1	-	-
Boron (water soluble)	mg/kg	0.06	MCERTS	< 0.2	-	< 0.2	-	-
Cadmium (agua regia extractable)	mg/kg	0.2	MCERTS	0.2	-	< 0.2	-	_
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	1.2		1.0		_
Copper (aqua regia extractable)	mg/kg	1	MCERTS	3.7	-	3.8	-	_
Lead (aqua regia extractable)	mg/kg	2	MCERTS	< 2.0	-	< 2.0	-	-
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	-	< 0.3	-	_
Nickel (aqua regia extractable)	mg/kg	2	MCERTS	2.3	-	< 2.0	-	-
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	-	< 1.0	-	-
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	2.5	-	2.1	-	-
Zinc (aqua regia extractable)	mg/kg	2	MCERTS	70	-	13	-	-
= /	2° 2							

Project / Site name: Carfax, Winchester

				205226	205227	205220	205220	205220
Lab Sample Number				295326	295327	295328	295329	295330
Sample Reference				BH01	BH01	BH02	BH02	BH02
Sample Number				None Supplied				
Depth (m)				4.00-4.10	10.00-10.20	3.00-3.10	9.50-10.00	16.75-17.00
Date Sampled	21/10/2013	21/10/2013	23/10/2013	23/10/2013	23/10/2013			
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics								
Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Petroleum Hydrocarbons

TPH1 (C10 - C40)	ma/ka	10	MCERTS	< 10	-	< 10	-	-
	iiig/itg	10	HIGEIGI	V 10				
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10

Project / Site name: Carfax, Winchester

Lab Sample Number				295331	295332		
Sample Reference				BH03	BH03		
Sample Number	None Supplied	None Supplied					
Depth (m)				18.00-18.20	14.00-14.50		
Date Sampled				23/10/2013	23/10/2013		
Time Taken				None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Stone Content	%	0.1	NONE	< 0.1	< 0.1		
Moisture Content	%	N/A	NONE	18	16		
Total mass of sample received	kg	0.001	NONE	0.55	0.49		
Asbestos in Soil	Type	N/A	ISO 17025	-	-		

General Inorganics

pH	pH Units	N/A	MCERTS	-	-		
Total Cyanide	mg/kg	1	MCERTS	-	-		
Total Sulphate as SO ₄	mg/kg	100	ISO 17025	-	-		
Water Soluble Sulphate (Soil Equivalent)	g/l	0.0025	MCERTS	-	-		
Water Soluble Sulphate as SO ₄ (2:1)	mg/kg	2.5	MCERTS	-	-		
Water Soluble Sulphate (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	-	-		
Sulphide	mg/kg	1	MCERTS	-	-		
Total Organic Carbon (TOC)	%	0.1	MCERTS	-	-		

Total Phenols

Total Phenols (monohydric)	mg/kg	2	MCERTS	-	-		

Speciated PAHs Naphthalene mg/kg 0.05 MCERTS < 0.05 < 0.05 MCERTS Acenaphthylene < 0.20 < 0.20 0.2 mg/kg 0.1 MCERTS < 0.10 < 0.10 Acenaphthene mg/kg MCERTS Fluorene mg/kg 0.2 < 0.20 < 0.20 0.2 Phenanthrene mg/kg MCERTS < 0.20 < 0.20 Anthracene mg/kg 0.1 MCERTS < 0.10 < 0.10 Fluoranthene mg/kg 0.2 MCERTS < 0.20 < 0.20 Pyrene 0.2 MCERTS < 0.20 < 0.20 mg/kg Benzo(a)anthracene mg/kg 0.2 MCERTS < 0.20 < 0.20 MCERTS Chrysene 0.05 < 0.05 < 0.05 mg/kg Benzo(b)fluoranthene 0.1 MCERTS < 0.10 < 0.10 mg/kg Benzo(k)fluoranthene 0.2 MCERTS < 0.20 < 0.20 mg/kg MCERTS 0.1 < 0.10 < 0.10 Benzo(a)pyrene mg/kg Indeno(1,2,3-cd)pyrene mg/kg 0.2 MCERTS < 0.20 < 0.20 Dibenz(a,h)anthracene mg/kg 0.2 MCERTS < 0.20 < 0.20 Benzo(ghi)perylene mg/kg 0.05 MCERTS < 0.05 < 0.05 Total PAH

Speciated Total EPA-16 PAHs	mg/kg	1.6	MCERTS	< 1.6	< 1.6		

Heavy Metals / Metalloids

neuvy neurons / neuronas							
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	-	-		
Barium (aqua regia extractable)	mg/kg	1	MCERTS	-	-		
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	-	-		
Boron (water soluble)	mg/kg	0.2	MCERTS	-	-		
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	-	-		
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	-	-		
Copper (aqua regia extractable)	mg/kg	1	MCERTS	-	-		
Lead (aqua regia extractable)	mg/kg	2	MCERTS	-	-		
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	-	-		
Nickel (aqua regia extractable)	mg/kg	2	MCERTS	-	-		
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	-	-		
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	-	-		
Zinc (aqua regia extractable)	mg/kg	2	MCERTS	-	-		

Project / Site name: Carfax, Winchester

Lab Sample Number				295331	295332		
Sample Reference				BH03	BH03		
Sample Number	None Supplied	None Supplied					
Depth (m)	18.00-18.20	14.00-14.50					
Date Sampled	23/10/2013	23/10/2013					
Time Taken				None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Monoaromatics							
Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0		
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0		
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0		
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0		
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0		
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0		

Petroleum Hydrocarbons

TPH1 (C10 - C40)	mg/kg	10	MCERTS	-	-		
	5, 5						•
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1	< 0.1		
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1		
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1		
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0		
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0		
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0		
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0		
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10		
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	< 0.1		
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1		
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1		
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0		
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0		
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10		
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10		
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10		

Project / Site name: Carfax, Winchester

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and topsoil/loam soil types. Data for unaccredited types of solid should be interpreted with care.

of a sample is calculated as the % weight of the stones not passing a 2 mm sieve. Results are not corrected for stone content.

Stone content

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
295326	BH01	None Supplied	4.00-4.10	White chalk. **
295327	BH01	None Supplied	10.00-10.20	White chalk. **
295328	BH02	None Supplied	3.00-3.10	White chalk. **
295329	BH02	None Supplied	9.50-10.00	White chalk. **
295330	BH02	None Supplied	16.75-17.00	White chalk. **
295331	BH03	None Supplied	18.00-18.20	White chalk. **
295332	BH03	None Supplied	14.00-14.50	White chalk. **

** Non MCerts Matrix

Project / Site name: Carfax, Winchester

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BTEX and MTBE in soil	Determination of BTEX in soil by headspace GC- MS.	In-house method based on USEPA8260	L073S-PL	W	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
pH in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Stones not passing through a 10 mm sieve is determined gravimetrically and reported as a percentage of the dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil	Determination of water soluble sulphate by extraction with water followed by ICP-OES. Results reported corrected for extraction ratio (soil equivalent) as g/l and mg/kg; and upon the 2:1	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	MCERTS
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Total organic carbon in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L023-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	ISO 17025
TPH1 (Soil)	Determination of dichloromethane/hexane extractable hydrocarbons in soil by GC-MS.	In-house method	L064-PL	D	MCERTS
TPHCWG (Soil)	Determination of pentane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method	L076-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Claire Hooley Tweedie Evans Consulting Ltd The Old Chapel 35a Southover Wells Somerset BA5 1UH

t: 01749 677 760 f: 01749 679 345 e: claire.hooley@tecon.co.uk

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

Analytical Report Number : 13-48143

Project / Site name:	Carfax , Winchester	Samples received on:	15/11/2013
Your job number:	1308015.001	Samples instructed on:	15/11/2013
Your order number:		Analysis completed by:	19/11/2013
Report Issue Number:	1	Report issued on:	19/11/2013
Samples Analysed:	1 water sample		

1+ Signed:

Thurstan Plummer Organics Technical Manager For & on behalf of i2 Analytical Ltd.

Other office located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

Kohner	

Signed:

Rexona Rahman Customer Services Manager **For & on behalf of i2 Analytical Ltd.**

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Lab Sample Number				298094			
Sample Reference				BH01			
Sample Number				None Supplied			
Depth (m)				None Supplied			
Date Sampled				13/11/2013			
Time Taken				None Supplied			
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status				
General Inorganics							
pH	pH Units	N/A	ISO 17025	7.1			
Electrical Conductivity	μS/cm	10	NONE	590			
Total Cyanide	μg/l	10	ISO 17025	< 10			
Complex Cyanide	µg/l	10	NONE	< 10			
Free Cyanide	μg/l	10	ISO 17025	< 10			
Sulphate as SO ₄	ug/l	45	ISO 17025	25400			
Sulphide	µg/l	5	NONE	< 5.0			
Chloride	mg/l	0.15	ISO 17025	19			
Ammonium as NH ₄	µg/l	15	ISO 17025	16			
Total Organic Carbon (TOC)	mg/l	0.1	ISO 17025	2.7			
Total Phenols Total Phenols (monohydric)	µg/l	10	ISO 17025	< 10			
Speciated PAHs							
Naphthalene	µg/l	0.01	ISO 17025	< 0.01			
Acenaphthylene	µg/l	0.01	ISO 17025	< 0.01			
Acenaphthene	µg/l	0.01	ISO 17025	< 0.01			
Fluorene	µg/l	0.01	ISO 17025	< 0.01			
Phenanthrene	µg/l	0.01	ISO 17025	< 0.01			
Anthracene	µg/l	0.01	ISO 17025	< 0.01	ĺ		
				< 0.01			
Fluoranthene	μα/Ι	0.01	ISO 17025	< 0.01			
Pyrene	µg/I µg/I	0.01	ISO 17025 ISO 17025	< 0.01			
Pyrene	µg/l	0.01	ISO 17025	< 0.01			
Pyrene Benzo(a)anthracene	µg/l µg/l	0.01	ISO 17025 ISO 17025	< 0.01 < 0.01			
Pyrene Benzo(a)anthracene Chrysene	нд/I I/ди µд/I	0.01 0.01 0.01	ISO 17025 ISO 17025 ISO 17025	< 0.01 < 0.01 < 0.01			
Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene	µg/I µg/I µg/I µg/I	0.01 0.01 0.01 0.01	ISO 17025 ISO 17025 ISO 17025 ISO 17025	< 0.01 < 0.01 < 0.01 < 0.01			
Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene	ا/дц µд/l µд/l µд/l µд/l	0.01 0.01 0.01 0.01 0.01	ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01			
Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene	ا/ویر اروپ اروپ اروپ پهرا پهرا پهرا	0.01 0.01 0.01 0.01 0.01 0.01	ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01			
Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	μ <u>μ</u>]/ μ <u>μ</u>]/ μ <u>μ</u>]/ μ <u>μ</u>]/ μ <u>μ</u>]/ μ <u>μ</u>]/	0.01 0.01 0.01 0.01 0.01 0.01 0.01	ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01			
Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	المبل المما الممالمم	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01			
Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	المبل المما الممالمم	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01			

Lab Canada Number				200004	ł	1		
Lab Sample Number				298094		ł	i	
Sample Reference				BH01	Į	ł	┨────┤	
Sample Number				None Supplied		ł	i	l
Depth (m)				None Supplied		ł	i	
Date Sampled				13/11/2013		ł	i	
Time Taken				None Supplied	 		{i	ļ
	1		Accreditation Status	1	Į		I	
Analytical Parameter	ç	Limit of detection	Sta	1	Į		I	
(Water Analysis)	Units	ti ti	lita	1	Į		I	
	1	9 9 F	" tio	1	Į		I	
		L	1			<u> </u>		
Heavy Metals / Metalloids			-					
Antimony (dissolved)	µg/l	1.7	ISO 17025	< 1.7	L	I		
Arsenic (dissolved)	µg/l	1	ISO 17025	7.7	L	I		
Barium (dissolved)	µg/l	0.05	ISO 17025	9.2	ļ	I	ļ	
Beryllium (dissolved)	µg/l	0.2	ISO 17025	< 0.2		Į	ļ	
Boron (dissolved)	µg/l	10	ISO 17025	42		Į	ļ	
Cadmium (dissolved)	µg/l	0.08	ISO 17025	< 0.08	ļ	I		
Chromium (hexavalent)	µg/l	5	NONE	< 5.0	ļ	I		
Chromium (dissolved)	µg/l	0.4	ISO 17025	8.4	ļ	ł	┡─────	
Cobalt (dissolved)	µg/l	0.3	ISO 17025	0.4	ļ	ł	ļi	ļI
Copper (dissolved)	µg/l	0.7	ISO 17025	2.8	ļ	ł	┡─────	
Iron (dissolved)	mg/l	0.004	ISO 17025	0.19	ļ	ł	┡─────	
Lead (dissolved)	µg/l	1	ISO 17025	1.9	ł	ł	╉─────┤	l
Manganese (dissolved)	µg/l	0.06	ISO 17025	27	ł	ł	╉─────┤	
Mercury (dissolved)	µg/l	0.5	ISO 17025	< 0.5	Į	ł	┨────┤	
Molybdenum (dissolved)	µg/l	0.4	ISO 17025	< 0.4	Į	ł	┨────┤	
Nickel (dissolved)	µg/l	0.3	ISO 17025	0.4	ł	ł	╉────┤	
Phosphorus (dissolved)	µg/l	30	ISO 17025	74.5	ł	ł	╉────┤	
Selenium (dissolved)	µg/l	4	ISO 17025	< 4.0	ł	ł	╉────┤	
Tin (dissolved)	µg/l	1	ISO 17025	< 1.0	ł	ł	╉────┤	ļ
Vanadium (dissolved)	µg/l	1.7	ISO 17025	< 1.7	ł	t	łi	I
Zinc (dissolved)	µg/l	0.4	ISO 17025	4.8	L	I	L	
Calcium (dissolved)		0.012	100 1707-	170	r	T	r	
Calcium (dissolved) Magnesium (dissolved)	mg/l	0.012	ISO 17025 ISO 17025	170 2.9	ł	t	łi	⊢−−−−− I
Magnesium (dissolved) Potassium (dissolved)	mg/l	0.005	ISO 17025 ISO 17025	2.9	ł	t	łi	⊢−−−−− I
Potassium (dissolved) Sodium (dissolved)	mg/l mg/l	0.025	ISO 17025 ISO 17025	1.7	t	t	t	├───
	nig/i	0.01	130 1/025	15		8	8	
Monoaromatics								
Benzene	µg/l	1	ISO 17025	< 1.0		1	1	1
Toluene	µg/l	1	ISO 17025	< 1.0	l	1	i 1	I
Ethylbenzene	µg/i µg/l	1	ISO 17025	< 1.0	l	1	I 1	
p & m-xylene	µg/l	1	ISO 17025	< 1.0				
o-xylene	μg/l	1	ISO 17025	< 1.0	l	1	I 1	
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	< 1.0				
Petroleum Hydrocarbons								
Mineral Oil (C10 - C40)	µg/l	10	NONE	< 10				
Diesel Range Organics (C10 - C25)	µg/l	10	NONE	< 10				
TPH1 (C10 - C40)	µg/l	10	NONE	< 10				
TPH2 (C6 - C10)	µg/l	10	NONE	< 10				
TPH-CWG - Aliphatic >C5 - C6	µg/l	10	NONE	< 10		I		
TPH-CWG - Aliphatic >C6 - C8	µg/l	10	NONE	< 10		I		
TPH-CWG - Aliphatic >C8 - C10	µg/l	10	NONE	< 10	ļ	Į	ļ]
TPH-CWG - Aliphatic >C10 - C12	µg/l	10	NONE	< 10	ļ	Į	ļ	
TPH-CWG - Aliphatic >C12 - C16	µg/l	10	NONE	< 10	ļ	Į	ļ	
TPH-CWG - Aliphatic >C16 - C21	µg/l	10	NONE	< 10	ļ	ł	ļi	
TPH-CWG - Aliphatic >C21 - C35	µg/l	10	NONE	< 10	ļ	ł	ļi	
TPH-CWG - Aliphatic (C5 - C35)	µg/l	10	NONE	< 10		<u>I</u>		
						 	r	a
TPH-CWG - Aromatic >C5 - C7	µg/l	10	NONE	< 10	ļ	ł	ŀ −−−−−↓	ļ
TPH-CWG - Aromatic >C7 - C8	µg/l	10	NONE	< 10	ļ	ł	ŀ −−−−−↓	ļ
TPH-CWG - Aromatic >C8 - C10	µg/l	10	NONE	< 10	ļ	ł	ļi	ļ
TPH-CWG - Aromatic >C10 - C12	µg/l	10	NONE	< 10	ļ	ł	ŀ −−−−−↓	ļ
TPH-CWG - Aromatic >C12 - C16	µg/l	10	NONE	< 10	ŧ	ł	╉─────┤	I
TPH-CWG - Aromatic >C16 - C21 TPH-CWG - Aromatic >C21 - C35	µg/l	10	NONE	< 10	ł	ł	╉─────┤	ļI
IPH-CWG - Aromatic >C21 - C35	µg/l	10	NONE	< 10	I	I	I :	1 I

Lab Sample Number				298094		
Sample Reference				BH01		
Sample Number				None Supplied		
Depth (m)				None Supplied		
Date Sampled				13/11/2013		
Time Taken				None Supplied		
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status			
TPH-CWG - Aromatic (C5 - C35)	µg/l	10	NONE	< 10		

Analytical Report Number: 13-48143

Project / Site name: Carfax , Winchester

Lab Sample Number				298094		
Sample Reference				BH01		
Sample Number				None Supplied		
Depth (m)				None Supplied		
Date Sampled				13/11/2013		
Time Taken				None Supplied		
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status			

VOCs							
Chloromethane	µg/l	1	ISO 17025	< 1.0			
Chloroethane	µg/l	1	ISO 17025	< 1.0			
Bromomethane	µg/l	1	ISO 17025	< 1.0			
Vinyl Chloride	µg/l	1	ISO 17025	< 1.0			
Trichlorofluoromethane	µg/l	1	ISO 17025	< 1.0			
1,1-dichloroethene	µg/l	1	ISO 17025	< 1.0			
1,1,2-Trichloro 1,2,2-Trifluoroethane	µg/l	1	ISO 17025	< 1.0			
Cis-1,2-dichloroethene	µg/l	1	ISO 17025	< 1.0			
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	< 1.0			
1,1-dichloroethane	µg/l	1	ISO 17025	< 1.0			
2,2-Dichloropropane	µg/l	1	ISO 17025	< 1.0			
Trichloromethane	µg/l	1	ISO 17025	< 1.0			
1,1,1-Trichloroethane	µg/l	1	ISO 17025	< 1.0			
1,2-dichloroethane	µg/l	1	ISO 17025	< 1.0			
1,1-Dichloropropene	µg/l	1	ISO 17025	< 1.0			
Trans-1,2-dichloroethene	µg/l	1	ISO 17025	< 1.0			
Benzene	µg/l	1	ISO 17025	< 1.0			
Tetrachloromethane	µg/l	1	ISO 17025	< 1.0			
1,2-dichloropropane	µg/l	1	ISO 17025	< 1.0			
Trichloroethene	µg/l	1	ISO 17025	< 1.0	 		
Dibromomethane	µg/l	1	ISO 17025	< 1.0			
Bromodichloromethane	µg/l	1	ISO 17025	< 1.0			
Cis-1,3-dichloropropene	µg/l	1	ISO 17025	< 1.0	 		
Trans-1,3-dichloropropene	µg/l	1	ISO 17025	< 1.0			
Toluene	µg/l	1	ISO 17025	< 1.0			
1,1,2-Trichloroethane	µg/l	1	ISO 17025	< 1.0			
1,3-Dichloropropane	µg/l	1	ISO 17025	< 1.0			
Dibromochloromethane	µg/l	1	ISO 17025	< 1.0			
Tetrachloroethene	µg/l	1	ISO 17025	< 1.0			
1,2-Dibromoethane	µg/l	1	ISO 17025	< 1.0			
Chlorobenzene	µg/l	1	ISO 17025	< 1.0			
1,1,1,2-Tetrachloroethane	µg/l	1	ISO 17025	< 1.0			
Ethylbenzene	µg/l	1	ISO 17025	< 1.0			
p & m-xylene	µg/l	1	ISO 17025	< 1.0	 		
Styrene	µg/l	1	ISO 17025	< 1.0			
Tribromomethane	µg/l	1	ISO 17025	< 1.0	 		
o-xylene	µg/l	1	ISO 17025	< 1.0	 		
Isopropylbenzene	µg/l	1	ISO 17025	< 1.0	 l	l	
Bromobenzene	µg/l	1	ISO 17025	< 1.0	 		
N-Propylbenzene	µg/l	1	ISO 17025	< 1.0			
2-Chlorotoluene	µg/l	1	ISO 17025	< 1.0	 l	l	
4-Chlorotoluene	µg/l	1	ISO 17025	< 1.0			
1,3,5-Trimethylbenzene	µg/l	1	ISO 17025	< 1.0			
Tert-Butylbenzene	µg/l	1	ISO 17025	< 1.0	l	l	
1,2,4-Trimethylbenzene	µg/l	1	ISO 17025	< 1.0			
Sec-Butylbenzene	µg/l	1	ISO 17025	< 1.0			
1,3-dichlorobenzene	µg/l	1	ISO 17025	< 1.0			
P-Isopropyltoluene	µg/l	1	ISO 17025	< 1.0			
1,2-dichlorobenzene	µg/l	1	ISO 17025	< 1.0			
1,4-dichlorobenzene	µg/l	1	ISO 17025	< 1.0			
Butylbenzene	µg/l	1	ISO 17025	< 1.0			
1,2-Dibromo-3-chloropropane	µg/l	1	ISO 17025	< 1.0			
1,2,4-Trichlorobenzene	µg/l	1	ISO 17025	< 1.0			
Hexachlorobutadiene	µg/l	0.1	ISO 17025	< 0.1 < 1.0			l
1,2,3-Trichlorobenzene	µg/l	1	ISO 17025	< 1.0			

Analytical Report Number: 13-48143

Project / Site name: Carfax , Winchester

Lah Camala Number				202004		1	
Lab Sample Number Sample Reference				298094 BH01	 		
Sample Reference Sample Number				BH01 None Supplied			
Depth (m)				None Supplied			
Date Sampled				13/11/2013			
Time Taken				None Supplied			
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status				
		5 7	tion				
SVOCs							
Aniline	µg/l	0.05	NONE	< 0.05			
Phenol	µg/l	0.05	NONE	< 0.05			
2-Chlorophenol	µg/l	0.05	NONE	< 0.05			
Bis(2-chloroethyl)ether	µg/l	0.05	NONE	< 0.05			
1,3-Dichlorobenzene	µg/l	0.05	NONE	< 0.05			
1,2-Dichlorobenzene	µg/l	0.05	NONE	< 0.05	 		
1,4-Dichlorobenzene Bis(2-chloroisopropyl)ether	µg/l µg/l	0.05	NONE NONE	< 0.05 < 0.05			
2-Methylphenol	µg/I µg/I	0.05	NONE	< 0.05	 l	l	
Hexachloroethane	µg/l	0.05	NONE	< 0.05	1	1	
Nitrobenzene	µg/l	0.05	NONE	< 0.05			
4-Methylphenol	µg/l	0.05	NONE	< 0.05			
Isophorone	µg/l	0.05	NONE	< 0.05			
2-Nitrophenol	µg/l	0.05	NONE	< 0.05	 l	l	
2,4-Dimethylphenol	µg/l	0.05	NONE	< 0.05			
Bis(2-chloroethoxy)methane 1,2,4-Trichlorobenzene	µg/l	0.05	NONE NONE	< 0.05 < 0.05			
Naphthalene	µg/l µg/l	0.03	ISO 17025	< 0.03			
2,4-Dichlorophenol	µg/l	0.05	NONE	< 0.01			
4-Chloroaniline	µg/l	0.05	NONE	< 0.05			
Hexachlorobutadiene	µg/l	0.05	NONE	< 0.05			
4-Chloro-3-methylphenol	µg/l	0.05	NONE	< 0.05			
2,4,6-Trichlorophenol	µg/l	0.05	NONE	< 0.05			
2,4,5-Trichlorophenol	µg/l	0.05	NONE	< 0.05			
2-Methylnaphthalene	µg/l	0.05	NONE	< 0.05	 		
2-Chloronaphthalene Dimethylphthalate	µg/l µg/l	0.05	NONE NONE	< 0.05 < 0.05			
2,6-Dinitrotoluene	µg/l	0.05	NONE	< 0.05			
Acenaphthylene	µg/l	0.03	ISO 17025	< 0.01			
Acenaphthene	µg/l	0.01	ISO 17025	< 0.01			
2,4-Dinitrotoluene	µg/l	0.05	NONE	< 0.05			
Dibenzofuran	µg/l	0.05	NONE	< 0.05			
4-Chlorophenyl phenyl ether	µg/l	0.05	NONE	< 0.05			
Diethyl phthalate	µg/l	0.05	NONE NONE	< 0.05 < 0.05	 		
4-Nitroaniline Fluorene	µg/l µg/l	0.05	ISO 17025	< 0.05			
Azobenzene	µg/l	0.05	NONE	< 0.05	1	1	
Bromophenyl phenyl ether	µg/l	0.05	NONE	< 0.05			
Hexachlorobenzene	µg/l	0.02	NONE	< 0.02			
Phenanthrene	µg/l	0.01	ISO 17025	< 0.01			
Anthracene	µg/l	0.01	ISO 17025	< 0.01			
Carbazole	µg/l	0.05	NONE	< 0.05			
Dibutyl phthalate Anthraquinone	µg/l	0.05	NONE NONE	< 0.05 < 0.05			
Fluoranthene	µg/l µg/l	0.05	ISO 17025	< 0.05			
Pyrene	µg/l	0.01	ISO 17025	< 0.01	l	l	
Butyl benzyl phthalate	µg/l	0.05	NONE	< 0.01	1	1	
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01			
Chrysene	µg/l	0.01	ISO 17025	< 0.01			
Benzo(b)fluoranthene	µg/l	0.01	ISO 17025	< 0.01			
Benzo(k)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	 		
Benzo(a)pyrene	µg/l	0.01	ISO 17025	< 0.01			
Indeno(1,2,3-cd)pyrene	µg/l	0.01	ISO 17025	< 0.01	 l	l	
Dibenz(a,h)anthracene Benzo(ghi)perylene	µg/l	0.01	ISO 17025 ISO 17025	< 0.01			
DENZO(GHI)PELYIENE	µg/l	0.01	150 17025	< 0.01	1	1	

U/S = Unsuitable Sample I/S = Insufficient Sample

Analytical Report Number : 13-48143

Project / Site name: Carfax , Winchester

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Ammonium as NH4 in water	Determination of ammonium in water by addition of buffer solution followed by ion selective electrode. Results for ammonia species are calculated from raw ammoniacal nitrogen data, and then reported	In-house method	L035-PL	W	ISO 17025
Boron in water	Determination of boron by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM	L039-PL	W	ISO 17025
BTEX and MTBE in water	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073S-PL	W	ISO 17025
Chloride in water	Determination of Chloride in water by Gallery Discrete Analyser based on reaction with mercury (II) thiocyanate and acid solution with iron (III) nitrate to form a red/brown iron (III) thiocyanate	Methods for the Examination of Water and Associated Materials Chloride in Waters, Sewage and Effluents 1981.ISBN 0117516260	L082 B	W	ISO 17025
Complex cyanide in water	Determination of complex cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	NONE
Electrical conductivity of water	Determination of electrical conductivity in water by electrometric measurement.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L031-UK	w	NONE
Free cyanide in water	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	ISO 17025
Hexavalent chromium in water	Determination of hexavalent chromium in water by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	W	NONE
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	w	ISO 17025
Mineral Oil (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS.	In-house method	L070-UK	W	NONE
Monohydric phenols in water	Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	w	ISO 17025
pH in water	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-UK	w	ISO 17025
Semi-volatile organic compounds in water	Determination of semi-volatile organic compounds in leachate by extraction in dichloromethane followed by GC-MS.			w	NONE
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L070-UK	w	ISO 17025
Sulphate in water	Determination of sulphate in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	w	ISO 17025
Sulphide in water	Determination of sulphide in water by ion selective electrode.	In-house method	L010-PL	w	NONE
Total cyanide in water	Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	ISO 17025

Analytical Report Number : 13-48143

Project / Site name: Carfax , Winchester

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Total organic carbon in water	Determination of total organic carbon in water by the measurement on a non-dispersive infrared analyser of carbon dioxide released by acidification.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	ISO 17025
TPH2 (Waters)	Determination of hydrocarbons C6-C10 by headspace GC-MS.	In-house method based on USEPA8260	L073-PL	W	NONE
TPH7 (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-UK	W	NONE
Volatile organic compounds in water	Determination of volatile organic compounds in water by headspace GC-MS. Accredited matrices: SW PW	In-house method based on USEPA8260	L036-UK	W	ISO 17025

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

APPENDIX H

Soil Geotechnical Certificates of Analysis

Tweedie Evans Consulting Limited The Old Chapel 35a Southover Wells Somerset BA5 1UH

For the attention of Claire Hooley

Date of Issue 19

19 November 2013 Page Number 1 of 6

TEST REPORT

PROJECT/SITE	Carfax, Winchester		Sampl	es received	30/10/2013
GEL REPORT NUMBER	28647		Schedu	le received	30/10/2013
Your ref/PO:	1308015.001		Testing c	ommenced	31/10/2013
	SUMMARY C	OF RESULTS ATTACH	IED		
TEST METHOD & DESCR	RIPTION			QUANTITY	ACCREDITED
BS1377: Part 2: 1990:3.	2 Moisturo Contont			3	TEST YES
	.2-4.4&5.2-5.4, Liquid & Plastic Lim	its		3	YES
	.3, Saturation Moisture Content	113		1	YES
	: pH, Sulphate - water and acid solu	uble. sulphur (Subcontracto	ed)	6	YES
Remarks		Approved Signatories:			
The report should not be	reproduced except in full without	R Ewens (Laboratory Business	Manager) W Jone	es (Laboratory	Supervisor)
written permission from t	his laboratory.	J Hanson (Director) C Thomas	(Consultant)		
		Myr	_		
Doc TR01 Rev No. 5	Revision date 22/03/13 DC:JH				

Geotechnical Engineering Ltd

Centurion House Olympus Park, Quedgeley Gloucester GL2 4NF

Registered number: 00700739 **VAT Number:** 682 5857 89

www.geoeng.co.uk

geotech@geoeng.co.uk TEL: 01452 527743 Fax: 01452 729314

Payments: Geotechnical Engineering Limited Sort code: 30-15-99 Bank account: 00072116

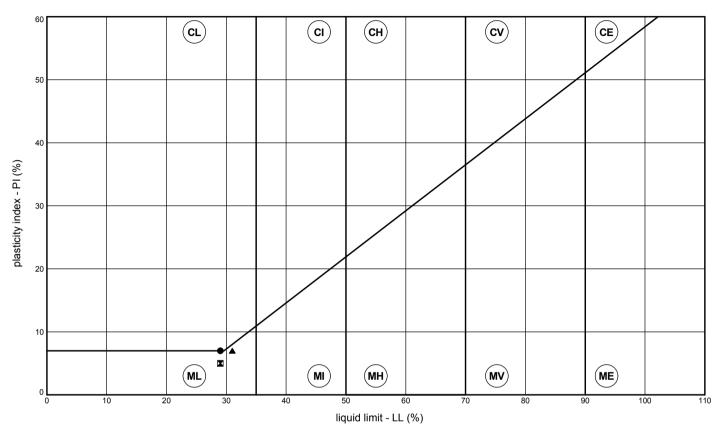
LIQUID AND PLASTIC LIMITS

BS.1377 : Part 2 : 1990 : 4 and 5

Geotechnical Engineering Ltd, Centurion House, Olympus Park, Quedgeley, Gloucester. GL2 4NF, Tel. 01452 527743 28647. GPJ 19/11/2013 08:43:11

CLIENT TWEEDIE EVANS CONSULTING LIMITED

SITE CARFAX, WINCHESTER


borehole	san	nple	specimen	natural	specimen	fraction	liquid	plastic	plasticity	
/trial pit no.	no./type	depth (m)	depth (m)	moisture content	preparation and	>0.425 mm	limit (%)	limit (%)	index (%)	description and remarks
				(%)	test method	(%)				
3H01	D	3.50	3.50	26	BXE	16	29	22	7	Off white slightly sandy CHALK putty wi a little fine gravel
WS05	D	2.00	2.00	26	BXE	33	29	24	5	Off white slightly sandy CHALK putty wi a little f-m gravel
WS12	D	2.50	2.50	27	BXE	11	31	24	7	Off white slightly sandy CHALK putty wi a little f-m gravel
jeneral remarks natural moisture NP denotes nor	e content de n-plastic								d)	
# denotes samp specimen preparative A - as received	aration:		D - over	n dried (60°	C) X - c	method: one penet	rometer	(test 4.3		CONTRACT CHECKE
B - washed on (C - air dried	0.425mm si	eve	E - over F - not k	n dried (105 nown		ne point co asagrande			er (test 4.4 t 4.5)	28647 WJ

ATTERBERG LINE PLOT

CLIENT TWEEDIE EVANS CONSULTING LIMITED

SITE CARFAX, WINCHESTER

	BH/TP No.	depth (m)	LL	PL	PI	remarks
•	BH01	3.50	29	22	7	
	WS05	2.00	29	24	5	
	WS12	2.50	31	24	7	

SATURATION MOISTURE CONTENT OF CHALK

BS.1377 : Part 2 : 1990 : 3.3

CLIENT TWEEDIE EVANS CONSULTING LIMITED

SITE CARFAX, WINCHESTER

borehole /trial pit no.	sam no./type	nple depth (m)	specimen depth (m)	natural moisture content	bulk density (Mg/m ³)	dry density (Mg/m ³)	saturation moisture content	porosity (%)	description and remarks
		()	(,	(%)	(((%)		
BH01	D	4.35	4.35	24	1.97	1.60	26	41	Off white CHALK
general remarks natural moisture # denotes samp	e content de							cified)	1
test method: immersion in wa	ater (test 3.3	3)							CONTRACT CHECKED

Depot Road Newmarket CB8 0AL Tel: 01638 606070

Geotechnical Engineering Ltd Centurion House Olympus Park, Quedgeley Gloucester GL2 4NF

FAO Matthew Counsell 06 November 2013

Dear Matthew Counsell

Test Report Number	243255
Your Project Reference	28647 - Carfax, Winchester

Please find enclosed the results of analysis for the samples received 31 October 2013.

All soil samples will be retained for a period of one month and all water samples will be retained for 7 days following the date of the test report. Should you require an extended retention period then please detail your requirements in an email to customerservices@chemtest.co.uk. Please be aware that charges may be applicable for extended sample storage.

If you require any further assistance, please do not hesitate to contact the Customer Services team.

Yours sincerely

1001 asi

Keith Jones, Technical Manager

- Notes to accompany report:
 - The sign < means 'less than'
 - Tests marked 'U' hold UKAS accreditation
- Tests marked 'M' hold MCertS (and UKAS) accreditation
- Tests marked 'N' do not currently hold UKAS accreditation
- Tests marked 'S' were subcontracted to an approved laboratory
- n/e means 'not evaluated'
- *i/s means 'insufficient sample'*
- u/s means 'unsuitable sample'
- Comments or interpretations are beyond the scope of UKAS accreditation
- The results relate only to the items tested
- All results are expressed on a dry weight basis

• The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, phenols

- For all other tests the samples were dried at < 37°C prior to analysis
- Uncertainties of measurement for the determinands tested are available upon request
- None of the test results included in this report have been recovery corrected

Test Report 243255 Cover Sheet

Geotechnical Engineering Ltd Centurion House Olympus Park, Quedgeley Gloucester GL2 4NF

LABORATORY TEST REPORT

Results of analysis of 6 samples received 31 October 2013

Report Date 06 November 2013

FAO Matthew Counsell

28647 - Carfax, Winchester

Login Batch No						243	255		
Chemtest LIMS ID				AJ36164	AJ36165	AJ36166	AJ36167	AJ36168	AJ36169
Sample ID				BH01	BH01	BH02	BH02	BH03	BH03
Sample No									
Sampling Date				30/10/2013	30/10/2013	30/10/2013	30/10/2013	30/10/2013	30/10/2013
Depth				2.30m	3.50m	6.50m	10.00m	13.00m	16.00m
Matrix				SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
SOP↓ Determinand↓	CAS No↓ U	nits↓ *							
2010 pH			М	8.8	8.7	8.8	8.9	8.8	8.9
2175 Sulfur (total TRL report 447)		%	М	0.04	0.02	0.03	0.01	0.02	0.02
2120 Sulfate (2:1 water soluble) as SO4	14808798	g l-1	М	0.10	0.01	<0.01	<0.01	<0.01	<0.01
2430 Sulfate (total BS1377 HCl extract)	14808798	%	М	0.02	0.02	0.01	0.02	0.02	0.01

APPENDIX I

Ground Gas Monitoring Results

Ground Gas Monitoring Data Sheet

	-
	C

Name of Site:	Carfax, Winchester	Atmospheric Pressure Trend (last 5 d	ays):	Generally rising
Project Code:	1308015.001	Instrument & serial No.:	Gas analyser & flow pod	
Date:	25/10/13		Dip meter	Dual phase interface probe
Weather Conditions:	Cloudy	Instrument Condition:	Good	

General Ground Conditions: Damp

Monitoring	Time of	Atmospheric	Bore	hole Flow R	ate (l/h)				centration				Groundwater	Borehole	
Well	sampling	Pressure					% v/v)		% v/v)		6 v/v)	LEL (%)	Depth (mbgl)		Comment
Reference		(mb)	Max	Min	Stable	Max	Stable	Max	Stable	Min	Stable		,		
															HS and CO = 0.0ppm, no LNAPL detected
BH01	14:40	996	1.0	0.0	0.1	0.0	0.0	0.9	0.9	18.3	18.3	0.0	18.53	25.07	
															HS and CO = 0.0ppm, no LNAPL detected
DU00	45.00	000								15.6	15.0		_		
BH02	15:20	996	0.0	0.0	0.0	0.0	0.0	4.1	4.1	15.6	15.6	0.0	Dry	20.45	HS and CO = 0.00ppm, no LNAPL detected
BH03	13:40	996	0.0	-0.1	0.0	0.0	0.0	0.0	0.0	20.4	20.4	0.0	Dry	20.25	
															HS and CO = 0.0ppm, no LNAPL detected
WS03	15:50	996	0.0	0.0	0.0	0.0	0.0	0.9	0.6	19.3	19.4		_		
W503	15.50	990	0.0	0.0	0.0	0.0	0.0	0.9	0.0	19.5	19.4	0.0	Dry	4.95	HS and CO = 0.0ppm, no LNAPL detected
WS06	14:25	996	0.1	0.0	0.1	0.0	0.0	1.3	1.3	17.7	17.7	0.0	Dry	1.74	
															HS and CO = 0.0ppm, no LNAPL detected
WS10	14:15	996	0.3	0.0	0.1	0.0	0.0	0.9	0.8	19.3	19.3	0.0	Dev	0.45	
W310	14.15	990	0.5	0.0	0.1	0.0	0.0	0.9	0.8	19.5	19.5	0.0	Dry	2.15	HS and CO = 0.0ppm, no LNAPL detected
															· · · · · · · · · · · · · · · · · · ·
WS11	11:00	996	0.0	-0.1	0.0	0.0	0.0	0.0	0.0	20.1	20.1	0.0	Dry	5.13	
															HS and CO = 0.0ppm, no LNAPL detected
WS13	11:10	996	0	0	0	0	0	0.3	0.3	19.4	19.4	0	Dry	5.05	
	11.10	550	0	0	U	0	0	0.5	0.5	19.7	1.7.7	0	Diy	5.05	
Completed by:		СН		1										1	
/															

Authorised by:

ET

Ground Gas Monitoring Data Sheet

	_	1	-
10		C	-

Name of Site:	Carfax, Winchester	Atmospheric Pressure Trend (last 5 d	ays):	Generally rising
Project Code:	1308015.001	Instrument & serial No.:	Gas analyser & flow pod	
Date:	13/11/13		Dip meter	Dual phase interface probe
Weather Conditions:	Cloudy	Instrument Condition:	Good	

General Ground Conditions: Damp

Monitoring	Time of	Atmospheric	Bore	hole Flow R	ate (I/h)				centration	-			Groundwater	Borehole	
Well Reference	sampling	Pressure (mb)				CH ₄ (9	. ,		% v/v)		6 v/v)	LEL (%)	Depth (mbgl)		Comment
Reference		(מווו)	Max	Min	Ave	Max	Stable	Max	Stable	Min	Stable				
															H ₂ S and CO= 0, no LNAPL detected
BH01	09:00	1027	0.0	-0.1	-0.1	0.0	0.0	0.9	0.9	18.1	18.1	0.0	18.28	25.10	
															H2S and CO= 0, no LNAPL detected
BH02	11:15	1025	0.5	0.1	0.1	0.0	0.0	1.3	1.3	18.5	18.5	0.0	DRY	20.40	
DITOZ	11.15	1025	0.5	0.1	0.1	0.0	0.0	1.5	1.5	10.5	10.5	0.0	DRT	20.40	H ₂ S and CO= 0, no LNAPL detected
		1005													
BH03	11:45	1025	0.0	0.0	0.0	0.0	0.0	0.0	0.0	19.8	20.0	0.0	19.97	20.26	H ₂ S and CO= 0, no LNAPL detected
															H2S and CO= 0, no LINAPL detected
WS03	10:30	1027	0.0	0.0	0.0	0.0	0.0	2.6	2.6	15.4	15.4	0.0	DRY	4.84	
															H ₂ S and CO= 0, no LNAPL detected
WS06	11:00	1025	0.0	-0.1	0.0	0.0	0.0	1.5	1.5	18.2	18.2	0.0	DRY	1.69	
												0.0	DITI		H ₂ S and CO= 0, no LNAPL detected
WS10	11:30	1025	0.0	-0.1	0.0	0.0	0.0	1.6	1.6	16.9	16.9		551	0.40	
W310	11:50	1025	0.0	-0.1	0.0	0.0	0.0	1.0	1.0	10.9	10.9	0.0	DRY	2.13	H ₂ S and CO= 0, no LNAPL detected
WS11	13:00	1024	0.0	-0.7	0.0	0.0	0.0	0.4	0.4	19.9	19.9	0.0	DRY	5.05	
															H ₂ S and CO= 0, no LNAPL detected
WS13	12:00	1024	0.0	-0.1	-0.1	0.0	0.0	0.0	0.0	19.6	20.0	0.0	DRY	5.04	
	12.00	1021	0.0	0.1	0.1	0.0	0.0	0.0	0.0	20.0	2010	0.0	DIG	0.04	
Completed by:		TP													

Authorised by:

ET

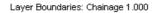
Ground Gas Monitoring Data Sheet

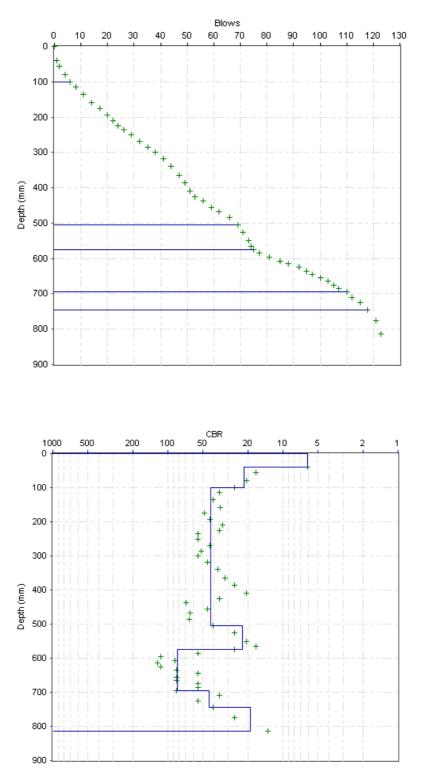
	_	1	-
10		C	-

Name of Site:	Carfax, Winchester	Atmospheric Pressure Trend (last 5 d	ays):	Generally rising
Project Code:	1308015.001	Instrument & serial No.:	Gas analyser & flow pod	
Date:	27/11/13		Dip meter	Dual phase interface probe
Weather Conditions:	Cloudy	Instrument Condition:	Good	

General Ground Conditions: Damp

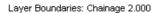
Monitoring	Time of	Atmospheric	Bore	hole Flow R	ate (l/h)				centration				Groundwater	Borehole	
Well Reference	sampling	Pressure			,	CH ₄ (9	. ,	CO ₂ (6 v/v)	LEL (%)	Depth (mbgl)		Comment
Reference		(mb)	Max	Min	Stable	Max	Stable	Max	Stable	Min	Stable				
															H2S and CO= 0, no LNAPL detected
BH01	12:35	1024	0.4	0.0	0.0	0.0	0.0	0.0	0.0	19.8	19.8	0.0	18.41	24.98	
															H2S and CO= 0, no LNAPL detected
BH02	12.05	1025	0.4	-0.3	-0.3	0.0	0.0	0.0	0.0	20.2	20.2	0.0	DRY	20.10	
01102	12.05	1025	0.4	0.5	0.5	0.0	0.0	0.0	0.0	20.2	20.2	0.0	DRT	20.10	H2S and CO= 0, no LNAPL detected
BH03	13.30	1024	0.0	-0.2	0.0	0.0	0.0	0.0	0.0	19.9	19.9	0.0	DRY	20.00	
															H2S and CO= 0, no LNAPL detected
WS03	12.20	1025	0.3	-0.2	0.0	0.0	0.0	2.5	2.5	16.4	16.4	0.0	DRY	4.84	
															H2S and CO= 0, no LNAPL detected
WS06	11.50	1026	0.1	-0.1	0.0	0.0	0.0	0.0	0.0	19.3	19.3	0.0	DRY	1.70	
												0.0	BIT	1.70	H2S and CO= 0, no LNAPL detected
WS10	12.50	1024	0.1	-0.1	0.0	0.0	0.0	0.9	0.9	18.7	18.7		221		
W310	12.50	1024	0.1	-0.1	0.0	0.0	0.0	0.9	0.9	10.7	10.7	0.0	DRY	2.11	H2S and CO= 0, no LNAPL detected
WS11	13.15	1024	0.3	-0.1	-0.1	0.0	0.0	0.2	0.2	19.8	19.8	0.0	DRY	5.04	
															H2S and CO= 0, no LNAPL detected
WS13	13.05	1024	0.3	-0.1	0	0.0	0.0	1.6	1.6	18.4	18.4	0.0	DRY	5.05	
	10100		0.0		<u> </u>	210	210	210	210		2.511	0.0	SIG	0.00	
Completed by:		TP													

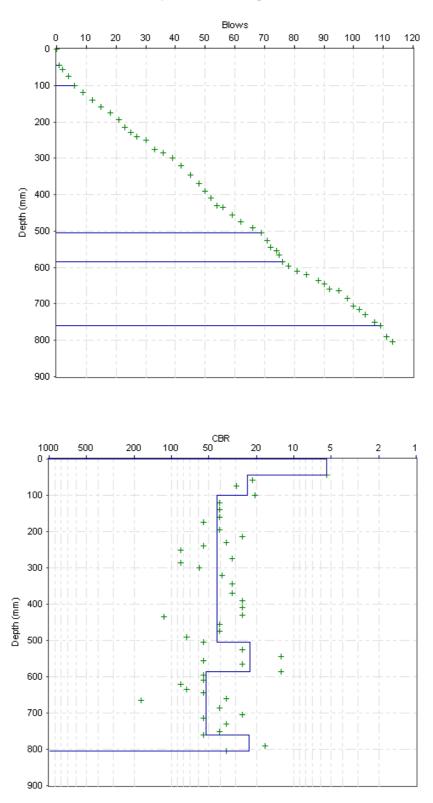

Authorised by:

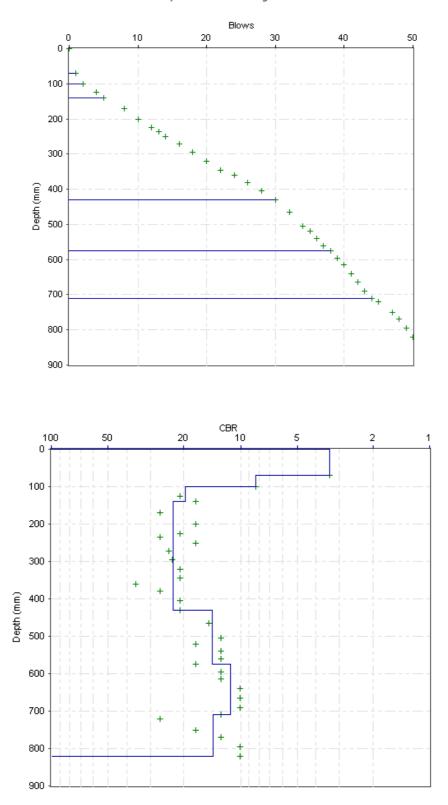

ET

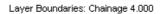
APPENDIX J

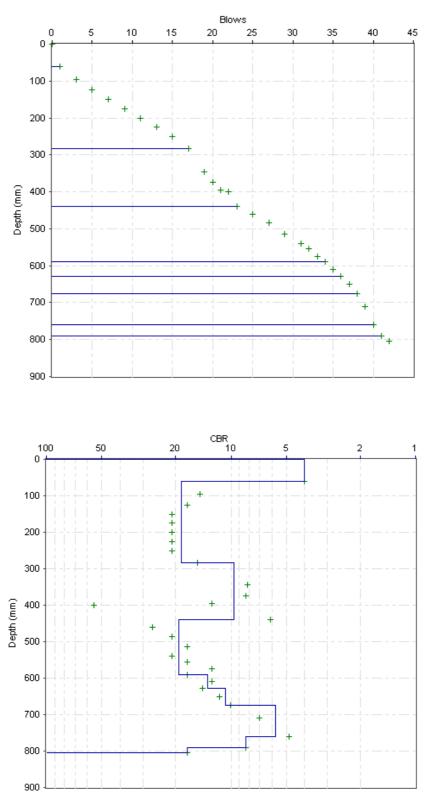
DCP-TRL Results

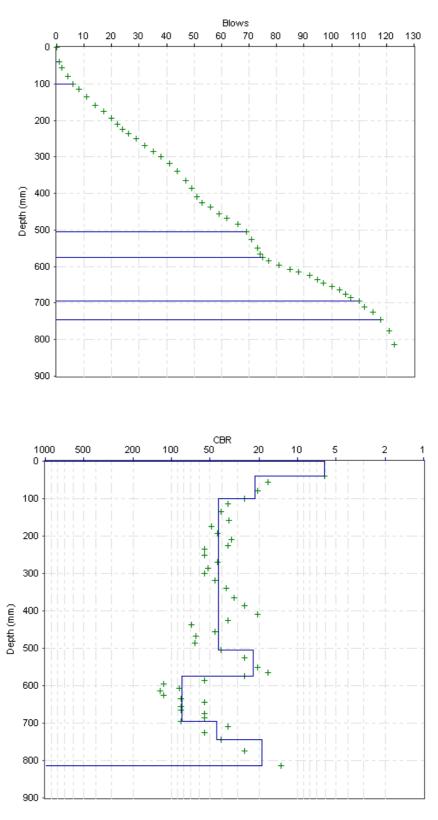





Carfax Site, Winchester




Layer Boundaries: Chainage 3.000


Carfax Site, Winchester

