STATEMENT OF HAMPSHIRE COUNTY COUNCIL AS THE LOCAL HIGHWAY AUTHORITY

PLANNING INSPECTORATE REFERENCE: APP/L1765/C/18/3214144 WINCHESTER CITY COUNCIL REFERENCE: 17/00271/USE

BARCLAYS, MAIN ROAD, LITTLETON, WINCHESTER, HAMPSHIRE, SO22 6QS

APPEAL BY MICHAEL CULHANE AGAINST WINCHESTER CITY COUNCIL FOR THE ISSUE OF AN ENFORCEMENT NOTICE FOR THE ALLEGED BREACH OF PLANNING CONTROL:

WITHOUT PLANNING PERMISSION, THE ERECTION OF A DETACHED BUILDING COMPRISING OF TWO FLATS AND A DOUBLE GARAGE ('THE BUILDING").

1.0 INTRODUCTION

1.1 Winchester City Council as the Local Planning Authority issued an enforcement notice on 18 September 2018 relating to Barclays, Littleton for the alleged breach in planning control:

Without planning permission, the erection of a detached building comprising of two flats and a double garage (The Building).
1.2 Hampshire County Council as the Local Highway Authority has been notified by Winchester City Council that the owner of the land, Mr Culhane (the Appellant), has appealed the enforcement notice on grounds (a), (b), (f) and (g). This statement is made in respect of the ground (a) appeal for the deemed application for planning permission. The Highway Authority considers that the access to the Appeal Site is not suitable to serve the residential development as visibility from the access to the southeast (left on exit) is substandard and the increase in the use of the access results in an unacceptable impact on highway safety. This statement sets out the Highway Authority's reasons why planning permission should not be granted.

2.0 THE APPEAL SITE LOCATION AND SURROUNDINGS

2.1 The Appeal Site (site) includes a detached house with a detached outbuilding. Pedestrian and vehicular access to the site is via a private driveway from Main Road.
2.2 Main Road (C95) is a classified road subject to a 30 mph speed limit. There is no footway provision or street lighting in the vicinity of the site. There are edge of carriageway road markings on both sides of the carriageway and there is a 'Slow' road marking on the south-east bound side of carriageway. The road level rises to the south-east to form a crest in the carriageway. Photographs of Main Road in the vicinity of the site are included in Appendix LHA1.
2.3 Main Road is the route for the no. 16 bus which operates a limited service between Winchester and Houghton. Timetable information is included in Appendix LHA2.

3.0 THE DEEMED PLANNING APPLICATION - GROUND (A) APPEAL

3.1 The outbuilding subject to this Appeal comprises residential accommodation on both the ground and first floors which has been arranged to form two flats. The deemed planning application seeks planning permission for the residential accommodation in the outbuilding to be used as two independent dwellings.

4.0 RELEVANT PLANNING POLICIES AND GUIDANCE

Development Plan

4.1 Policy DM18 (Access and Car Parking) of the Winchester District Local Plan Part 2 Development Management and Site Allocations aims to ensure that development proposals make appropriate provision for access in a safe and effective manner. Full policy wording is provided in Appendix LHA3.

National Guidance

4.2 National guidance in relation to visibility standards for streets where $85^{\text {th }}$ percentile speeds are below 37mph is set out in Department for Transport publication Manual for Streets (MfS) and the Chartered Institution of Highways and Transportation publication Manual for Streets 2 . Relevant extracts of MfS are contained within Appendix LHA3.

5.0 HIGHWAY CONSIDERATIONS

5.1 A driver of a vehicle emerging from the appeal site access and joining Main Road must have adequate visibility in each direction to see any oncoming traffic in sufficient time to make their manoeuvre safely. As set out in Table 7.1 and paragraphs 7.7.6 and 7.7.10 of MfS, the visibility requirement at the site access (which is a simple form of junction) onto Main Road is $2.4 m$ ' x ' distance by 43 m ' y ' distance (Appendix LH3 refers).
5.2 Visibility from the access to the north-west (right on exit) meets the required standard, whereas to the south-east (left on exit) visibility is severely restricted by trees and vegetation (photographs 3 and 4 in Appendix LHA1 refer). When measured to the nearside carriageway edge from an ' x ' distance of 2.4 m , $\mathrm{a}^{\prime} \mathrm{y}^{\prime}$ distance of approximately 10 m is available. A driver of an exiting vehicle will not be able to see oncoming vehicles until the vehicle has significantly protruded into the carriageway. Should an oncoming vehicle be on the opposing side of the carriageway (perhaps due to overtaking a cyclist or passing a pedestrian) it is likely that the driver of that vehicle would have insufficient time to react and to stop.
5.3 The provision of two residential dwellings, whether used as private residences or as holiday let accommodation, will generate additional vehicle movements using the site access. Given the site's location in respect of access to local facilities and public transport, and lack of attractive walking routes, occupiers are likely to rely heavily on the use of private motor vehicles. The TRICS database has been interrogated to establish the trip rate (per dwelling) for the flats. Each flat is likely to generate in the region of 4 vehicle movements per day. Appendix LHA4 includes the TRICS output data for privately owned flats (12-hour period 0700-1900). The TRICS database has no survey information on holiday let accommodation of this type. Nevertheless, it is the Highway Authority's opinion that the traffic generating potential of such accommodation is likely to be comparable to a permanent residence.
5.4 The development will increase the number of vehicle movements using the site access which could cause additional danger and inconvenience to other highway users, and as such the development is contrary to Policy DM18 of the Winchester District Local Plan Part 2 - Development Management and Site Allocations.

6.0 SUMMARY AND CONCLUSIONS

6.1 The appeal site access has severely restricted visibility when looking left on exit. It is estimated that the development of two dwellings will typically generate 8 additional vehicle movements using the appeal site access per day. The increase in vehicle use of the access will be detrimental to highway safety. It is considered that the development is contrary to Policy DM18 of the Winchester District Local Plan Part 2 - Development Management and Site Allocations. It is therefore respectfully requested that the Appeal on ground (a) be dismissed and the enforcement notice be upheld.

7.0 PLANNING CONDITIONS

7.1 Should planning permission be granted it is considered that no planning conditions can be imposed to overcome the Highway Authority's concerns.

Appendix LHA1 - Photographs

Photograph 1 - Main Road to the north-west

Photograph 2 - Main Road to the south-east

Photograph 3 - Visibility at the Site Access looking to the right from 2.4m ' x ' distance

Photograph 4 - Visibility at the Site Access looking to the left from 2.4m ' x ' distance

Appendix LHA2 - Bus Timetable

Winchester - Houghton	16
Monday - Friday (not Bank Holidays)	

Operated by: HBC
Stagecoach in Hampshire
Timetable valid from 6 Jan 2020 until further notice

	Service: Operator:	16 HBC	16 HBC	HBC
Winchester, The Broadway (Stand B)	Depart:	$10: 00$		$13: 30$
Winchester, City Road (Stop Rb)		$10: 04$		$13: 34$
Weeke, Dean Lane Corner (Stop Ref A)		$10: 09$		$13: 39$
Littleton, Church Lane		$10: 13$		$13: 43$
Crawley, Hacks Lane		$10: 18$		$13: 48$
Up Somborne, Strawberry Lane		$10: 22$		$13: 52$
Kings Somborne, Eldon Close		$10: 30$		$14: 00$
Kings Somborne, Parish Church		$10: 32$		$14: 02$
Stockbridge, Town Hall		$10: 40$	$12: 15$	$14: 08$
Houghton, The Boot Inn	Arrive:		$10: 46$	$12: 20$
Broughton, Rectory Lane			$14: 20$	

Created by Stagecoach Group Plc on 07/02/2020 03:36. This timetable is valid at the time of download from our website. However, this may be affected by alteration at short notice. To read service updates or to re-check your journey go to www.stagecoachbus.com.

Houghton - Winchester
Monday - Friday (not Bank Holidays)

Operated by: HBC
Stagecoach in Hampshire
Timetable valid from 6 Jan 2020 until further notice

	Service: Operator:	16 HBC	16 HBC	HBC
Houghton, The Boot Inn	Depart:	$08: 40$	$10: 46$	$12: 20$
Broughton, Rectory Lane		$08: 50$	$10: 55$	$12: 30$
Stockbridge, St Peters Church		$09: 00$	$11: 04$	$12: 43$
Kings Somborne, Parish Church		$09: 06$		$12: 50$
Kings Somborne, Eldon Close		$09: 08$	$12: 53$	
Up Somborne, Strawberry Lane		$09: 15$	$13: 00$	
Crawley, Hacks Lane		$09: 20$	$13: 05$	
Littleton, Church Lane	$09: 25$	$13: 10$		
Weeke, Dean Lane Corner (Stop Ref B)		$09: 31$	$13: 16$	
Winchester, City Road (Stop Rd)		$09: 35$	$13: 20$	
Winchester, The Broadway (Stand B)	Arrive:	$09: 40$	$13: 25$	

Created by Stagecoach Group Plc on 07/02/2020 03:36. This timetable is valid at the time of download from our website. However, this may be affected by alteration at short notice. To read service updates or to re-check your journey go to www.stagecoachbus.com.

Winchester - Houghton
Saturdays (not Bank Holidays)

Operated by: HBC
Stagecoach in Hampshire
Timetable valid from 6 Jan 2020 until further notice

	Service: Operator:	16 HBC	16 HBC	HBC
Winchester, The Broadway (Stand B)	Depart:	$10: 00$		$13: 30$
Winchester, City Road (Stop Rb)		$10: 04$		$13: 34$
Weeke, Dean Lane Corner (Stop Ref A)		$10: 09$		$13: 39$
Littleton, Church Lane		$10: 13$		$13: 43$
Crawley, Hacks Lane		$10: 18$		$13: 48$
Up Somborne, Strawberry Lane		$10: 22$		$13: 52$
Kings Somborne, Eldon Close		$10: 30$		$14: 00$
Kings Somborne, Parish Church		$10: 32$		$14: 02$
Stockbridge, Town Hall		$10: 40$	$12: 15$	$14: 08$
Houghton, The Boot Inn	Arrive:			
Broughton, Rectory Lane				$14: 28$

Created by Stagecoach Group Plc on 07/02/2020 03:36. This timetable is valid at the time of download from our website. However, this may be affected by alteration at short notice. To read service updates or to re-check your journey go to www.stagecoachbus.com.

Houghton - Winchester

Saturdays (not Bank Holidays)

Operated by: HBC
Stagecoach in Hampshire
Timetable valid from 6 Jan 2020 until further notice

	Service: Operator:	16 HBC	16 HBC	HBC
Houghton, The Boot Inn	Depart:	$08: 40$	$10: 46$	$12: 20$
Broughton, Rectory Lane		$08: 50$	$10: 55$	$12: 30$
Stockbridge, St Peters Church		$09: 00$	$11: 04$	$12: 43$
Kings Somborne, Parish Church		$09: 06$		$12: 50$
Kings Somborne, Eldon Close		$09: 08$	$12: 53$	
Up Somborne, Strawberry Lane		$09: 15$	$13: 00$	
Crawley, Hacks Lane		$09: 20$	$13: 05$	
Littleton, Church Lane	$09: 25$	$13: 10$		
Weeke, Dean Lane Corner (Stop Ref B)		$09: 31$	$13: 16$	
Winchester, City Road (Stop Rd)		$09: 35$	$13: 20$	
Winchester, The Broadway (Stand B)	Arrive:	$09: 40$	$13: 25$	

Created by Stagecoach Group Plc on 07/02/2020 03:36. This timetable is valid at the time of download from our website. However, this may be affected by alteration at short notice. To read service updates or to re-check your journey go to www.stagecoachbus.com.

Appendix LHA3 - Relevant planning policies and guidance

Part of the Winchester District Development Framework

Adopted April 2017 WINCHESTER DISTRICT
LOCAL PLAN PART 2
Development Management and Site Allocations

Policy DM18 - Access and Parking

In order to ensure that appropriate provision is made for parking and access, development will be permitted which accords with the Development Plan and:
i. provides parking in accordance with relevant standards and the needs of the development, for cars and other vehicles as necessary, including cycles;
ii. allows for access to, and movement within, the site in a safe and effective manner, having regard to the amenities of occupiers of the site and adjacent land and to the requirements of the emergency services and service providers, including turning facilities as appropriate;
iii. makes provision for access to the site in accordance with any highway requirements on the grounds of safety, including the provision of gateways, visibility splays, access to adopted highways and accompanying signage that may be required;
iv. provides for the needs of pedestrians and cyclists, including safe and attractive routes to, from and within the site, and cycle parking;
v. incorporates parking provision and vehicular access as part of the overall design of the scheme, including hard and soft landscaping, signage and lighting that is both necessary and of a high quality design, taking account of the character of the surrounding area.

Environmental Protection Policies

6.4.36 The following policies deal with developments that may cause pollution or be affected by existing pollution. These cover issues relating to noise, light, air quality, odour and dust pollution. Contaminated land and utilities developments are also addressed in this section.
6.4.37 Pollution generating developments have the potential to have negative impacts upon the existing environment, resulting in adverse health or quality of life impacts. Examples of potentially pollution generating uses include industrial and commercial development, educational establishments, health facilities, large community facilities, and some forms of leisure uses. All forms of development, including residential, have the potential to cause pollution by poor location and design, resulting in loss of amenity for neighbouring uses. This can be in terms of air pollution, additional traffic, noise, or odours (including emissions from both stack and fugitive emissions and cooking odours from catering processes).
6.4.38 In addition to uses which have potential for generating pollution, it is important to consider the effects of accommodating new development adjacent to existing uses which generate pollution, particularly noise and smells. Some forms of development will be particularly sensitive to existing pollution, including housing, educational establishments and health facilities.

Department for Transport

Manual for Streets

16 Highways Agency (1992) Design Manual for Roads and Bridges London: TSO.
17 Department of the Environment/Department of Transport (1977; 2nd edn 1992) Design Bulletin 32, Residential Roads and Footpaths - Layout Considerations. London: HMSO.
18 D.W. Harwood, D.B. Fambro, B. Fishburn, H. Joubert, R. Lamm and B. Psarianos. (1995) International Sight Distance Design Practices, International Symposium on Highway Geometric Design Practices, Boston, Massachusetts Conference Proceedings Washington USA:
Transportation Research Board.
19 Maycock G, Brocklebank
P. and Hall, R. (1998)

Road Layout Design Standards and Driver Behaviour. TRL Report No. 332. Crowthorne: TRL
7.4.6 A street with a 20 mph limit is not the same as a 20 mph zone. To create a 20 mph zone, it is a legal requirement that trafficcalming measures are installed to ensure that low speeds are maintained throughout. In such cases, the limit is signed only on entering the zone, and no repeater signs are necessary.
7.4.7 Any speed limits below 30 mph , other than 20 mph limits or 20 mph zones, require individual consent from the Secretary of State for Transport. Designers should note that such approval is unlikely to be given.
7.4.8 A speed limit is not an indication of the appropriate speed to drive at. It is the responsibility of drivers to travel within the speed limit at a speed suited to the conditions. However, for new streets, or where existing streets are being modified, and the design speed is below the speed limit, it will be necessary to include measures that reduce traffic speeds accordingly.
7.4.9 Difficulties may be encountered where a new development connects to an existing road. If the junction geometry cannot be made to conform to the requirements for prevailing traffic speeds, the installation of traffic-calming measures on the approach will allow the use of a lower design speed to be used for the new junction.

7.5 Stopping sight distance

7.5.1 This section provides guidance on stopping sight distances (SSDs) for streets where 85th percentile speeds are up to $60 \mathrm{~km} / \mathrm{h}$. At speeds above this, the recommended SSDs in the Design Manual for Roads and Bridges ${ }^{16}$ may be more appropriate.
7.5.2 The stopping sight distance (SSD) is the distance within which drivers need to be able to see ahead and stop from a given speed. It is calculated from the speed of the vehicle, the time required for a driver to identify a hazard and then begin to brake (the perception-reaction time), and the vehicle's rate of deceleration. For new streets, the design speed is set by the designer. For existing streets, the 85 th percentile wet-weather speed is used.
7.5.3 The basic formula for calculating SSD (in metres) is:

$$
\mathrm{SSD}=v t+v^{2} / 2 d
$$

where:
$v \quad=\operatorname{speed}(\mathrm{m} / \mathrm{s})$
$t \quad=$ driver perception-reaction time (seconds)
d $\quad=$ deceleration $\left(\mathrm{m} / \mathrm{s}^{2}\right)$
7.5.4 The desirable minimum SSDs used in the Design Manual for Roads and Bridges are based on a driver perception-reaction time of 2 seconds and a deceleration rate of $2.45 \mathrm{~m} / \mathrm{s}^{2}$ (equivalent to $0.25 g$ where g is acceleration due to gravity ($9.81 \mathrm{~m} / \mathrm{s}^{2}$)). Design Bulletin 32^{17} adopted these values.

7.5.5 Drivers are normally able to stop

 much more quickly than this in response to an emergency. The stopping distances given in the Highway Code assume a driver reaction time of 0.67 seconds, and a deceleration rate of $6.57 \mathrm{~m} / \mathrm{s}^{2}$.7.5.6 While it is not appropriate to design street geometry based on braking in an emergency, there is scope for using lower SSDs than those used in Design Bulletin 32. This is based upon the following:

- a review of practice in other countries has shown that Design Bulletin 32 values are much more conservative than those used elsewhere; ${ }^{18}$
- research which shows that the goth percentile reaction time for drivers confronted with a side-road hazard in a driving simulator is 0.9 seconds (see TRL Report 332 ${ }^{19}$);
- carriageway surfaces are normally able to develop a skidding resistance of at least 0.45 g in wet weather conditions. Deceleration rates of $0.25 g$ (the previously assumed value) are more typically associated with snow-covered roads; and
- of the sites studied in the preparation of this manual, no relationship was found between SSDs and casualties, regardless of whether the sites complied with Design Bulletin 32 or not.

Table 7.1 Derived SSDs for streets (figures rounded).

Speed	Kilometres per hour	16	20	24	25	30	32	40	45	48	50	60
	Miles per hour	10	12	15	16	19	20	25	28	30	31	37
SSD (metres)	9	12	15	16	20	22	31	36	40	43	56	
SSD adjusted for bonnet length. See 7.6 .4	11	14	17	18	23	25	33	39	43	45	59	

Additional features will be needed to achieve low speeds
7.5.7 The SSD values used in MFS are based on a perception-reaction time of 1.5 seconds and a deceleration rate of $0.45 \mathrm{~g}\left(4.41 \mathrm{~m} / \mathrm{s}^{2}\right)$. Table 7.1 uses these values to show the effect of speed on SSD.
7.5.8 Below around 20 m , shorter SSDs themselves will not achieve low vehicle speeds: speed-reducing features will be needed. For higher speed roads, i.e. with an 85th percentile speed over $60 \mathrm{~km} / \mathrm{h}$, it may be appropriate to use longer SSDs, as set out in the Design Manual for Roads and Bridges.
7.5.9 Gradients affect stopping distances. The deceleration rate of 0.45 g used to calculate the figures in Table 7.1 is for a level road. A 10% gradient will increase (or decrease) the rate by around 0.1 g .

7.6 Visibility requirements

7.6.1 Visibility should be checked at junctions and along the street. Visibility is measured horizontally and vertically.
7.6.2 Using plan views of proposed layouts, checks for visibility in the horizontal plane ensure that views are not obscured by vertical obstructions.
7.6.3 Checking visibility in the vertical plane is then carried out to ensure that views in the horizontal plane are not compromised by obstructions such as the crest of a hill, or a bridge at a dip in the road ahead. It also takes into account the variation in driver eye height and the height range of obstructions. Eye height is assumed to range from 1.05 m (for car drivers) to 2 m (for lorry drivers). Drivers need to be able to see obstructions 2 m high down to a point 600 mm above the carriageway. The latter dimension is used to ensure small children can be seen (Fig. 7.17).
7.6.4 The SSD figure relates to the position of the driver. However, the distance between the driver and the front of the vehicle is typically up to 2.4 m , which is a significant proportion of shorter stopping distances. It is therefore recommended that an allowance is made by adding 2.4 m to the SSD.

Figure 7.17 Vertical visibility envelope.

7.7 Visibility splays at junctions

7.7.1 The visibility splay at a junction ensures there is adequate inter-visibility between vehicles on the major and minor arms (Fig. 7.18).
7.7.2 The distance back along the minor arm from which visibility is measured is known as the X distance. It is generally measured back from the 'give way' line (or an imaginary 'give way' line if no such markings are provided). This distance is normally measured along the centreline of the minor arm for simplicity, but in some circumstances (for example where there is a wide splitter island on the minor arm) it will be more appropriate to measure it from the actual position of the driver.
7.7.3 The Y distance represents the distance that a driver who is about to exit from the minor arm can see to his left and right along the main alignment. For simplicity it is measured along the nearside kerb line of the main arm, although vehicles will normally be travelling a distance from the kerb line. The measurement is taken from the point where this line intersects the centreline of the minor arm (unless, as above, there is a splitter island in the minor arm).
7.7.4 When the main alignment is curved and the minor arm joins on the outside of a bend, another check is necessary to make sure that an approaching vehicle on the main arm is visible over the whole of the Y distance. This is done by drawing an additional sight line which meets the kerb line at a tangent.
7.7.5 Some circumstances make it unlikely that vehicles approaching from the left on the main arm will cross the centreline of the main arm - opposing flows may be physically
segregated at that point, for example. If so, the visibility splay to the left can be measured to the centreline of the main arm.

X distance

7.7.6 An X distance of 2.4 m should normally be used in most built-up situations, as this represents a reasonable maximum distance between the front of the car and the driver's eye.
7.7.7 A minimum figure of 2 m may be considered in some very lightly-trafficked and slow-speed situations, but using this value will mean that the front of some vehicles will protrude slightly into the running carriageway of the major arm. The ability of drivers and cyclists to see this overhang from a reasonable distance, and to manoeuvre around it without undue difficulty, should be considered.
7.7.8 Using an X distance in excess of 2.4 m is not generally required in built-up areas.
7.7.9 Longer X distances enable drivers to look for gaps as they approach the junction. This increases junction capacity for the minor arm, and so may be justified in some circumstances, but it also increases the possibility that drivers on the minor approach will fail to take account of other road users, particularly pedestrians and cyclists. Longer X distances may also result in more shunt accidents on the minor arm.
TRL Report No. 184^{20} found that accident risk increased with greater minor-road sight distance.

Y distance

7.7.10 The Y distance should be based on values for SSD (Table 7.1).

20 Summersgill I., Kennedy, J. and Baynes, D. (1996) Accidents at Three-arm Priority Junctions on Urban Single-carriageway Roads TRL Report no 184. Crowthorne: TRL.

Possible features preventing vehicles from crossing centre line

Alternative left-hand visibilty splay if vehicles approaching from the left are unable to cross the centre line

b
Possible feature preventing

c
Alternative left-hand visibility splay if vehicles approaching

Figure 7.18 Measurement of junction visibility splays (a) on a straight road, (b) and (c) on bends.

Appendix LHA4 - TRICS Output

TRIP RATE CALCULATI ON SELECTION PARAMETERS:

```
Land Use : 03-RESIDENTIAL
Category : C - FLATS PRIVATELY OWNED
VEHI CLES
```

Selected regions and areas:
02 SOUTH EAST
EX ESSEX 1 days
03 SOUTH WEST
DC DORSET
1 days

This section displays the number of survey days per TRICS \circledR^{\circledR} sub-region in the selected set

Secondary Filtering selection:

This data displays the chosen trip rate parameter and its selected range. Only sites that fall within the parameter range are included in the trip rate calculation.

Parameter:	Number of dwellings
Actual Range:	6 to 14 (units:)
Range Selected by User:	6 to 20 (units:)
Parking Spaces Range:	All Surveys Included

Bedrooms per Dwelling Range: All Surveys Included
Percentage of dwellings privately owned: All Surveys Included
Public Transport Provision:
Selection by: Include all surveys
Date Range: $\quad 01 / 01 / 11$ to $28 / 03 / 14$
This data displays the range of survey dates selected. Only surveys that were conducted within this date range are included in the trip rate calculation.

Selected survey days:

Tuesday	1 days
Friday	1 days

This data displays the number of selected surveys by day of the week.

Selected survey types:	
Manual count	2 days
Directional ATC Count	0 days

This data displays the number of manual classified surveys and the number of unclassified ATC surveys, the total adding up to the overall number of surveys in the selected set. Manual surveys are undertaken using staff, whilst ATC surveys are undertaking using machines.

Selected Locations:
Edge of Town Centre
Suburban Area (PPS6 Out of Centre) 1
This data displays the number of surveys per main location category within the selected set. The main location categories consist of Free Standing, Edge of Town, Suburban Area, Neighbourhood Centre, Edge of Town Centre, Town Centre and Not Known.

Selected Location Sub Categories:
Residential Zone

This data displays the number of surveys per location sub-category within the selected set. The location sub-categories consist of Commercial Zone, Industrial Zone, Development Zone, Residential Zone, Retail Zone, Built-Up Zone, Village, Out of Town, High Street and No Sub Category.

Secondary Filtering selection:

Use Class:

$$
2 \text { days }
$$

This data displays the number of surveys per Use Class classification within the selected set. The Use Classes Order 2005 has been used for this purpose, which can be found within the Library module of TRICS ${ }^{\circledR}$.

Secondary Filtering selection (Cont.):

Population within 1 mile:

10,001 to 15,000	1 days
25,001 to 50,000	1 days

This data displays the number of selected surveys within stated 1-mile radii of population.

Population within 5 miles:	
50,001 to 75,000	1 days
125,001 to 250,000	1 days

This data displays the number of selected surveys within stated 5 -mile radii of population.
Car ownership within 5 miles:
1.1 to 1.5
2 days

This data displays the number of selected surveys within stated ranges of average cars owned per residential dwelling, within a radius of 5 -miles of selected survey sites.

Travel Plan:
 No

$$
2 \text { days }
$$

This data displays the number of surveys within the selected set that were undertaken at sites with Travel Plans in place, and the number of surveys that were undertaken at sites without Travel Plans.

PTAL Rating:
No PTAL Present 2 days
This data displays the number of selected surveys with PTAL Ratings.

LIST OF SITES relevant to selection parameters

PALM COURT
WEYMOUTH
SPA ROAD
Suburban Area (PPS6 Out of Centre)
Residential Zone
Total Number of dwellings: Survey date: FRIDAY
2 EX-03-C-01
FLATS
WESTCLIFF PARADE
SOUTHEND-ON-SEA
WESTCLIFF
Edge of Town Centre
Residential Zone
Total Number of dwellings:
Survey date: TUESDAY

28/03/14 Survey Type: MANUAL ESSEX

6
22/10/13 Survey Type: MANUAL

This section provides a list of all survey sites and days in the selected set. For each individual survey site, it displays a unique site reference code and site address, the selected trip rate calculation parameter and its value, the day of the week and date of each survey, and whether the survey was a manual classified count or an ATC count.

TRIP RATE for Land Use 03 - RESIDENTIAL/C - FLATS PRIVATELY OWNED

VEHI CLES

Calculation factor: 1 DWELLS

BOLD print indicates peak (busiest) period

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

The survey data, graphs and all associated supporting information, contained within the TRICS Database are published by TRICS Consortium Limited ("the Company") and the Company claims copyright and database rights in this published work. The Company authorises those who possess a current TRICS licence to access the TRICS Database and copy the data contained within the TRICS Database for the licence holders' use only. Any resulting copy must retain all copyrights and other proprietary notices, and any disclaimer contained thereon.

The Company accepts no responsibility for loss which may arise from reliance on data contained in the TRICS Database. [No warranty of any kind, express or implied, is made as to the data contained in the TRICS Database.]

Parameter summary

Trip rate parameter range selected: Survey date date range:
Number of weekdays (Monday-Friday):
Number of Saturdays:
Number of Sundays:
Surveys automatically removed from selection:
Surveys manually removed from selection:

6-14 (units:)
01/01/11-28/03/14
2
0
0
0
0

This section displays a quick summary of some of the data filtering selections made by the TRICS ${ }^{\circledR}$ user. The trip rate calculation parameter range of all selected surveys is displayed first, followed by the range of minimum and maximum survey dates selected by the user. Then, the total number of selected weekdays and weekend days in the selected set of surveys are show. Finally, the number of survey days that have been manually removed from the selected set outside of the standard filtering procedure are displayed.

